A NOTE ON THE “MEAN VALUE” SOFTWARE RELIABILITY MODEL

Nikolay Pavlov1 §, Anton Iliev2,
Asen Rahnev3, Nikolay Kyurkchiev4

1,2,3,4Faculty of Mathematics and Informatics
University of Plovdiv Paisii Hilendarski
24, Tzar Asen Str., 4000 Plovdiv, BULGARIA

Abstract: In this paper we study the Hausdorff approximation of the Heaviside step function \(h_{t_0}(t) \) by sigmoidal curve based on the ”mean value” software reliability model and find an expression for the error of the best approximation.

AMS Subject Classification: 68M15, 68N30

Key Words: software reliability model, Gompertz curve, Hausdorff approximation, Heaviside step function

1. Introduction

Ohishi, Okamura and Dohi \cite{7} formulate Gompertz software reliability model based on the following deterministic curve model:

\[
M(t) = \omega a^b^t
\] \hspace{1cm} (1)

where \(a, b \in (0, 1) \).

Satoh \cite{17} and Satoh and Yamada \cite{18} introduced a discrete Gompertz curve by discretization of the differential equations for the Gompertz curve and applied the discrete Gompertz curve to predict the number of detected software faults.

§Correspondence author

© 2018 Academic Publications, Ltd.

url: www.acadpubl.eu
Yamada [23] constructed a model with the following mean value function

$$M(t) = \omega (a^b t - a).$$

(2)

Some software reliability models, can be found in [6]–[12].

In this note we study the Hausdorff approximation of the Heaviside step function $h_{t_0}(t)$ by sigmoidal curve based on the ”mean value” software reliability model and find an expression for the error of the best approximation.

2. The ”mean value” software reliability model

We consider the following ”mean value” software reliability model – (MVSRM):

$$N(t) = \omega \left(a^b t - a \right), \quad t_0 = \frac{1}{\ln b} \ln \left(\frac{\ln \left(\frac{1+2a}{a} \right)}{\ln a} \right)$$

(3)

$$N(t_0) = \frac{1}{2}, \quad \omega = 1.$$

(4)

Definition 1. [19] The Hausdorff distance (the H–distance) $\rho(f, g)$ between two interval functions f, g on $\Omega \subseteq \mathbb{R}$, is the distance between their completed graphs $F(f)$ and $F(g)$ considered as closed subsets of $\Omega \times \mathbb{R}$. More precisely,

$$\rho(f, g) = \max\{ \sup_{A \in F(f)} \inf_{B \in F(g)} ||A - B||, \sup_{B \in F(g)} \inf_{A \in F(f)} ||A - B|| \},$$

wherein $||.||$ is any norm in \mathbb{R}^2, e. g. the maximum norm $||(t, x)|| = \max\{|t|, |x|\}$; hence the distance between the points $A = (t_A, x_A)$, $B = (t_B, x_B)$ in \mathbb{R}^2 is $||A - B|| = \max(|t_A - t_B|, |x_A - x_B|)$.

The one–sided Hausdorff distance d between the Heaviside step function

$$h_{t_0}(t) = \begin{cases} 0, & \text{if } t < t_0, \\ [0, 1 - a], & \text{if } t = t_0 \\ 1 - a, & \text{if } t > t_0 \end{cases}$$

(5)

and the sigmoid ((3)–(4)) satisfies the relation

$$N(t_0 + d; \theta, \lambda) = 1 - a - d.$$

(6)

The following theorem gives upper and lower bounds for d
Theorem. Let

\[
p = -1 + ab^{t_0} \\
q = 1 + ab^{t_0} b^{t_0} \ln a \ln b.
\]

For the one-sided Hausdorff distance \(d\) between \(h_{t_0}\) and the curve ((3)–(4)) the following inequalities hold for:

\[
\frac{2q}{-p} > e^2; \quad a < 0.5
\]

\[
d_l = \frac{1}{2\frac{q}{-p}} < d < \frac{\ln(2-\frac{q}{-p})}{2\frac{q}{-p}} = d_r.
\] \hspace{1cm} (7)

Proof. Let us examine the functions:

\[
F(d) = N(t_0 + d) - 1 + a + d. \hspace{1cm} (8)
\]

\[
G(d) = p + qd. \hspace{1cm} (9)
\]

From Taylor expansion we obtain \(G(d) - F(d) = O(d^2)\).

Hence \(G(d)\) approximates \(F(d)\) with \(d \to 0\) as \(O(d^2)\) (see Fig. 1).

In addition \(G'(d) > 0\).

Further, for \(\frac{2q}{-p} > e^2; \quad a < 0.5\) we have \(G(d_l) < 0\) and \(G(d_r) > 0\).

This completes the proof of the theorem.

The model ((3)–(4)) for \(a = 0.000001, b = 0.00000001, t_0 = 0.162443\) is visualized on Fig. 3.

Figure 1: The functions \(F(d)\) and \(G(d)\) for \(a = 0.000001, b = 0.00000001\).
Figure 2: The model ((3)–(4)) for $a = 0.01$, $b = 0.001$, $t_0 = 0.208752$; H–distance $d = 0.152434$.

Figure 3: The model ((3)–(4)) for $a = 0.000001$, $b = 0.00000001$, $t_0 = 0.162443$; H–distance $d = 0.101446$; $d_l = 0.033856$; $d_r = 0.114625$.

The model ((3)–(4)) for $a = 0.01$, $b = 0.001$, $t_0 = 0.208752$ is visualized on Fig. 2.

Remark 1. We propose a software module (see Fig. 4) within the programming environment CAS Mathematica for the analysis of the considered family of ”mean value” functions.

Remark 2. In many cases it is appropriate to use the following model (called by us for brevity) ”inverted deterministic software model” [9]:

$$M(t) = a^{b^k}. \quad (10)$$

Numerical example. This example is based on the data reported by Musa [9]. For the first 12 hours of testing, the number of failures each hour is given in Table 1.

Approximate solution by model (10) for $k = 1.23565$, $a = 118.71$ and $b = 0.671538$ is visualized on Fig. 5.
Manipulate[Dynamic@Show[Plot[f[t], {t, 0, 1.2}, LabelStyle -> Directive[Blue, Bold], PlotLabel -> a^\{b^\{t\}\} - a], PlotRange -> {Automatic, {0, 1 - a}}], {{b, 0.00000001}, 0.0000001, 0.1, Appearance -> "Open"}, {{a, 0.00000001}, 0.0000001, 0.1, Appearance -> "Open"}, Initialization :> (f[t_] := a^\{b^\{t\}\} - a)]

Figure 4: An example of the usage of dynamical and graphical representation for the function $N(t)$ for given a and b.
<table>
<thead>
<tr>
<th>Hour</th>
<th>Number of failures</th>
<th>Cumulative failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>43</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>54</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>75</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>97</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>104</td>
</tr>
</tbody>
</table>

Table 1: Cumulative failures

Figure 5: Approximate solution.

Acknowledgments

This work has been supported by the project FP17-FMI008 of Department for Scientific Research, Paisii Hilendarski University of Plovdiv.

References

