IJPAM: Volume 119, No. 1 (2018)

Title

ON MORE TOPOLOGICAL INDICES OF JAHANGIR GRAPHS

Authors

Ashaq Ali$^1$, Imran Hashim$^2$,
Waqas Nazeer$^3$, Shin Min Kang$^4$
$^{1,2}$Department of Mathematics and Statistics
The University of Lahore
Lahore, 54100, PAKISTAN
$^{3}$Division of Science and Technology
University of Education
Lahore, 54000, PAKISTAN
$^{4}$Department of Mathematics and RINS
Gyeongsang National University
Jinju, 52828, KOREA

Abstract

A topological index of graph $G$ is a numerical parameter related to $G$ which characterizes its topology and is preserved under isomorphism of graphs. Properties of the chemical compounds and topological indices are correlated. In this report, we compute newly defined topological indices, namely, $AG_1$ index, $SK$ index, $SK_1$ index and $SK_2$ index of Jahangir graphs. We also compute sum connectivity index and modified Randić index of underling graph.

History

Received: June 14, 2017
Revised: December 2, 2017
Published: June 4, 2018

AMS Classification, Key Words

AMS Subject Classification: 05A15, 05C05, 05C12, 05C50
Key Words and Phrases: topological index, Jahangir graph

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M.S. Ahmad, W. Nazeer, S.M. Kang, C.Y. Jung, Some computational aspects for the line graph of Banana tree graph, Global J. Pure Appl. Math., 13 (2016), 2601-2627.

2
M.S. Ahmad, W. Nazeer, S.M. Kang, C.Y. Jung, $M$-polynomials and degree based topological indices for the line graph of firecracker graph, Global J. Pure Appl. Math., 13 (2016), 2749-2776.

3
M. Ajmal, S.M. Kang, W. Nazeer, M. Munir, C.Y. Jung, Some topological invariants of the Möbius ladders, Global J. Pure Appl. Math., 12 (2016), 5317-5327.

4
M. Ajmal, W. Nazeer, W. Khalid, S.M. Kang, Zagreb polynomials and multiple Zagreb indices for the line graphs of Banana tree graph, firecracker graph and subdivision graphs, Global J. Pure Appl. Math., 13 (2016), 2659-2672.

5
M. Ajmal, W. Nazeer, W. Khalid, S.M. Kang, Forgotten polynomial and forgotten index for the line graphs of Banana tree graph, firecracker graph and subdivision graphs, Global J. Pure Appl. Math., 13 (2016), 2673-2682.

6
M. Ajmal, W. Nazeer, M. Munir, S.M. Kang, C.Y. Jung: The $M$-polynomials and topological indices of generalized prism network, Int. J. Math. Anal., 11 (2017), 293-303. doi: 10.12988/ijma.2017.7118

7
M. Ajmal, W. Nazeer, M. Munir, S.M. Kang, C.Y. Jung, The $M$-polynomials and topological indices of toroidal polyhex network, Int. J. Math. Anal., 11 (2017), 305-315. doi: 10.12988/ijma.2017.7119

8
M. Ajmal, W. Nazeer, M. Munir, S.M. Kang, Y.C. Kwun, Some algebraic polynomials and topological indices of generalized prism and toroidal polyhex networks, Symmetry, 9 (2017), Article ID 5, 12 pages. doi:10.3390/sym9010005

9
A. Ali, H. Iqbal, W. Nazeer, S.M. Kang, On topological indices of line graph of Firecracker graph, Int. J. Pure Appl. Math., 116 (2017), 1035-1042. doi: 10.12732/ijpam.v116i4.18

10
K. Ali, E.T. Baskoro, and I. Tomescu, On the Ramsey number of Paths and Jahangir graph $J_{3,m}$, The 3rd International Conference on 21st Century Mathematics 2007, Government College University, Lahore, Pakistan, 2007.

11
E. Deutsch, S. Klavzar, S, $M$-polynomial and degree-based topological indices, Iranian J. Math. Chem., 6 (2015), 93-102. doi: 10.22052/ijmc.2015.10106

12
M.R. Farahani, The Wiener index and Hosoya polynomial of a class of Jahangir graphs $J_{3,m}$, Fundam. J. Math. Math. Sci., 3 (2015), 91-96.

13
I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013), 351-361. doi: 10.5562/cca2294

14
I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535-538. doi: 10.1016/0009-2614(72)85099-1

How to Cite?

DOI: 10.12732/ijpam.v119i1.1 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 119
Issue: 1
Pages: 1 - 8


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).