IJPAM: Volume 119, No. 1 (2018)

Title

GENERAL WEAK CONTRACTION OF CONTINUOUS
AND DISCONTINUOUS FUNCTIONS

Authors

Shantanu Bhaumik$^1$, Surendra Kumar Tiwari$^2$
$^{1,2}$Department of Mathematics
Dr. C. V. Raman University
Bilaspur (C.G.), INDIA

Abstract

We prove general weak contraction theorem using three control functions in which one is continuous and other two are discontinuous.The result is verified with the help of suitable example.

History

Received: Jule 1, 2017
Revised: January 19, 2018
Published: June 18, 2018

AMS Classification, Key Words

AMS Subject Classification: 47H09, 47H10, 49J25
Key Words and Phrases: general weak contraction, control function, fixed point

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces, The J. Nonlinear Sci. Appl., 1, 1 (2008), 45-48.

2
B. E. Rhoades, Some theorems on weakly contractive maps, Nonlinear Anal. TMA, 47, 4 (2001), 2683-2693, doi: http://dx.doi.org/10.1016/S0362-546X(01)00388-1.

2
B. E. Rhoades, A Comparison of Various Definitions of Contractive Mappings, Trans. Amer. Math. Soc., 226 (1977), 257-290, doi: https://doi.org/10.1090/S0002-9947-1977-0433430-4.

3
B. S. Choudhury, A common unique fixed point result in metric spaces involving generalised altering distances, Math. Commun., 10 (2005), 105-110.

4
B. S. Choudhury, A. Kundu, $(\psi, \alpha, \beta)$-weak contractions in partially ordered metric spaces, Appl. Math. Lett., 25 (2012), 6-10.

5
B. S. Choudhury, N. Metiya, Fixed points of weak contractions in cone metric spaces, Nonlinear Anal. TMA, 72 (2010), 1589-1593.

6
B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces, Mathematical and Computer Modelling, 54, 1-2 (2011), 73-79.

7
B. S. Choudhury, P. Konar, B. E. Rhoades, N. Metiya, Fixed point theorems for generalized weakly contractive mappings. Nonlinear Anal. TMA, 74 (2011), 2116-2126, doi: http://dx.doi.org/10.1016/j.na.2010.11.017

8
D. Doric, Common fixed point for generalized $(\phi,\psi)$-weak contractions. Appl. Math. Lett., 22 (2009), 1896-1900.

9
I.A. Rus, Generalized $ \phi$-contractions, Mathematica, 24 (1982), 175-178.

10
J. H. Mai, X. H. Liu, Fixed points of weakly contractive maps and boundedness of orbits, Fixed Point Theory and Applications, (2007) Article ID 20962.

11
K. P. R. Sastry, G. V. R. Babu, Some fixed point theorems by altering distances between the points, Ind. J. Pure. Appl. Math., 30 (1999), 641-647.

12
M. S. Khan, M. Swaleh and S. Sessa, Fixed points theorems by altering distances between the points, Bull. Austral. Math. Soc., 30 (1984), 1-9.

13
N. Faried, S. Hamdy, Fixed point theorems for K+1 weakly compatible mappings, Int. J. Contemp. Math. Sci., 7 (2012), 873-879.

14
P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory and Applications, 8 (2008). Article ID 406368.

15
Q. Zhang, Y. Song, Fixed point theory for generalized $ \phi$-weak contractions, Applied Mathematics Letters, 22 (2009), 75-78.

16
R. Kannan, Some results on fixed points, Bulletin of the Calcutta Mathematical Society, 60 (1968), 71-76.

17
R. Kannan, Some results on fixed points II, The American Mathematical Monthly, 76 (1969), 405-408, doi: http://dx.doi.org/10.2307/2316437

18
S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J.Math. Anal. Appl., 67 (1979), 274-276.

19
S. V. R. Naidu, Some fixed point theorems in metric spaces by altering distances, Czechoslovak Math. Jr., 53 (2003), 205-212.

20
Ya. I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces, Oper. Theory Adv. Appl., 98 (1997), 7-22.

How to Cite?

DOI: 10.12732/ijpam.v119i1.14 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 119
Issue: 1
Pages: 167 - 177


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).