# IJPAM: Volume 119, No. 1 (2018)

# Title

GENERAL WEAK CONTRACTION OF CONTINUOUSAND DISCONTINUOUS FUNCTIONS

# Authors

Shantanu Bhaumik, Surendra Kumar TiwariDepartment of Mathematics

Dr. C. V. Raman University

Bilaspur (C.G.), INDIA

# Abstract

We prove general weak contraction theorem using three control functions in which one is continuous and other two are discontinuous.The result is verified with the help of suitable example.# History

**Received: **Jule 1, 2017
**Revised: **January 19, 2018
**Published: **June 18, 2018

# AMS Classification, Key Words

**AMS Subject Classification: **47H09, 47H10, 49J25
**Key Words and Phrases: **general weak contraction, control function, fixed point

# Download Section

**Download paper from here.**

You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

## Bibliography

- 1
- A. Azam and M. Arshad, Kannan fixed point theorem on generalized metric spaces,
*The J. Nonlinear Sci. Appl.*,**1**, 1 (2008), 45-48. - 2
- B. E. Rhoades, Some theorems on weakly contractive maps,
*Nonlinear Anal. TMA*,**47**, 4 (2001), 2683-2693,**doi:**http://dx.doi.org/10.1016/S0362-546X(01)00388-1. - 2
- B. E. Rhoades, A Comparison of Various Definitions of Contractive Mappings,
*Trans. Amer. Math. Soc.*,**226**(1977), 257-290,**doi:**https://doi.org/10.1090/S0002-9947-1977-0433430-4. - 3
- B. S. Choudhury, A common unique fixed point result in metric spaces involving generalised altering distances,
*Math. Commun.*,**10**(2005), 105-110. - 4
- B. S. Choudhury, A. Kundu,
-weak contractions in partially ordered metric spaces,
*Appl. Math. Lett.*,**25**(2012), 6-10. - 5
- B. S. Choudhury, N. Metiya, Fixed points of weak contractions in cone metric spaces,
*Nonlinear Anal. TMA*,**72**(2010), 1589-1593. - 6
- B. S. Choudhury, P. Maity, Coupled fixed point results in generalized metric spaces,
*Mathematical and Computer Modelling*,**54**, 1-2 (2011), 73-79. - 7
- B. S. Choudhury, P. Konar, B. E. Rhoades, N. Metiya, Fixed point theorems for generalized weakly contractive mappings.
*Nonlinear Anal. TMA*,**74**(2011), 2116-2126,**doi:**http://dx.doi.org/10.1016/j.na.2010.11.017 - 8
- D. Doric, Common fixed point for generalized -weak contractions.
*Appl. Math. Lett.*,**22**(2009), 1896-1900. - 9
- I.A. Rus, Generalized -contractions,
*Mathematica*,**24**(1982), 175-178. - 10
- J. H. Mai, X. H. Liu, Fixed points of weakly contractive maps and boundedness of orbits,
*Fixed Point Theory and Applications*, (2007) Article ID 20962. - 11
- K. P. R. Sastry, G. V. R. Babu, Some fixed point theorems by altering distances between the points,
*Ind. J. Pure. Appl. Math.*,**30**(1999), 641-647. - 12
- M. S. Khan, M. Swaleh and S. Sessa, Fixed points theorems by altering distances between the points,
*Bull. Austral. Math. Soc.*,**30**(1984), 1-9. - 13
- N. Faried, S. Hamdy, Fixed point theorems for K+1 weakly compatible mappings,
*Int. J. Contemp. Math. Sci.*,**7**(2012), 873-879. - 14
- P. N. Dutta, B. S. Choudhury, A generalization of contraction principle in metric spaces,
*Fixed Point Theory and Applications*,**8**(2008). Article ID 406368. - 15
- Q. Zhang, Y. Song, Fixed point theory for generalized -weak contractions,
*Applied Mathematics Letters*,**22**(2009), 75-78. - 16
- R. Kannan, Some results on fixed points,
*Bulletin of the Calcutta Mathematical Society*,**60**(1968), 71-76. - 17
- R. Kannan, Some results on fixed points II,
*The American Mathematical Monthly*,**76**(1969), 405-408,**doi:**http://dx.doi.org/10.2307/2316437 - 18
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces,
*J.Math. Anal. Appl.*,**67**(1979), 274-276. - 19
- S. V. R. Naidu, Some fixed point theorems in metric spaces by altering distances,
*Czechoslovak Math. Jr.*,**53**(2003), 205-212. - 20
- Ya. I. Alber, S. Guerre-Delabriere, Principles of weakly contractive maps in Hilbert spaces,
*Oper. Theory Adv. Appl.*,**98**(1997), 7-22.

# How to Cite?

**DOI: 10.12732/ijpam.v119i1.14**

International Journal of Pure and Applied Mathematics

**How to cite this paper?****Source:****ISSN printed version:**1311-8080

**ISSN on-line version:**1314-3395

**Year:**2018

**Volume:**119

**Issue:**1

**Pages:**167 - 177

Google Scholar; DOI (International DOI Foundation); WorldCAT.

**This work is licensed under the Creative Commons Attribution International License (CC BY).**