IJPAM: Volume 119, No. 2 (2018)

Title

BALL REMOTALLY IN TENSOR PRODUCT SPACES

Authors

M. Iranmanesh$^1$, F. Soleimany$^2$
$^{1,2}$Department of Mathematical Sciences
Shahrood University of Technology
P.O. Box 3619995161-316, Shahrood, IRAN

Abstract

In the paper, we study Banach spaces $X, Y$ with subspaces $ H, G $ whose unit ball $ H\otimes G $ is remotal in tensor product space $ X\otimes Y$.

History

Received: February 2, 2017
Revised: August 19, 2017
Published: June 23, 2018

AMS Classification, Key Words

AMS Subject Classification: 46B20, 41A50, 46B28
Key Words and Phrases: Farthest points, Ball remotally, Tensor product space

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
E. Asplund, Farthest points in reflexive locally uniformly rotund Banachspaces, Isr. J. Math, 4 (1966)213-216.

2
P. Bandyopadhyay, B. L. Lin, T. S. S. R. K. Rao, Ball remotal subspaces ofBanach spaces, Colloq. Math, 114 (2009)119-133.

3
P. Bandyopadhyay, Y. J. Li, B.-L. Lin, D. Narayana, “Proximinality in Banach spaces, J.Math.Anal.Appl, 341,(1) 309–317, 2008.

4
P. Bandyopadhayay,T. Paul, A. K. Roy, Ball remotality of M-idealsin some function spaces and function algebras, Positivity, 14 no 3, (2010)459-471.

5
R. Deville, V. E. Zizler, Farthest points in w*-compact sets, Bull. Austral. Math. Soc., 38(1988)433-439.

6
M. Edelstein, Farthest points of sets in uniformly convex Banach spaces,Isr. J. Math, 4 (1966) 171-176.

7
C. Franchetti, I. Singer, Deviation and farthest points in normed linearspaces, Rom. J. Pure. Appl. Math, 24 (1979)373-381.

8
R. Khalil, N. Matar, Every strongly remotal subset in Banach spaces is a singleton, British J. Math. andComput. Sci., 5,(2015), 28-34.

9
K.S. Lau, Farthest points in weakly compact sets, Isr J. Math, 22 (1975), 168-174.

10
W. A. Light , E. W Cheny, Approximation theory in tensor product spaces, Lectuer Notes in Mathemathic 1169, 1985.

11
A. Maaden, On the C-Farthest points. Extracta Mathematicae, 16 (2), (2001)211-222.

12
T.D. Narang, A study of farthest point, Nieuw Arch. Wisk, 25(1977)54-79.

13
R. A. Ryan,Introduction to tensor products of Banach spaces,Springer-Verlag London Berlin, 2002.

How to Cite?

DOI: 10.12732/ijpam.v119i2.3 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 119
Issue: 2
Pages: 295 - 307


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).