FIXED POINT THEOREM FOR WEAKLY C-CONTRACTIVE TYPE MAPPING ON COMPLEX VALUED METRIC SPACES

J. Gnanaraj, S. Gopinath, S. Lalithambigai

1Department of Mathematics
Government Arts College
Paramakudi, 623 701, Tamilnadu, INDIA

2Department of Mathematics
Kamaraj College of Engineering and Technology
Virudhunagar, 626 001, Tamilnadu, INDIA

3School of Mathematics
Madurai Kamaraj University
Madurai, 625021, Tamilnadu, INDIA

Abstract: In this article, we prove that if f is a weakly C-contractive type self map on a complete complex valued metric space (X, d) then it has a unique fixed point and also, we extend this result to complete complex valued b-metric spaces.

AMS Subject Classification: 47H10, 54H25

Key Words: complex valued metric space, complex valued b-metric space, weakly C-contractive type map, fixed point

1. Introduction and Preliminaries

According to Azam et. al [1], we have the following notation and definitions. Let \mathbb{C} denote the set of complex numbers and $a, b \in \mathbb{C}$. Define a partial order \preceq on \mathbb{C} as follows: $a \preceq b$ if and only if $Re(a) \leq Re(b), Im(a) \leq Im(b)$.

Definition 1. Let X be a non-empty set. Suppose that the mapping $d : X \times X \to \mathbb{C}$ satisfies:

Received: August 12, 2017
Revised: July 12, 2018
Published: July 21, 2018
1. $0 \leq d(x, y)$, for all $x, y \in X$ and $d(x, y) = 0$ if and only if $x = y$

2. $d(x, y) = d(y, x)$, for all $x, y \in X$

3. $d(x, y) \leq d(x, z) + d(z, y)$, for all $x, y, z \in X$.

Then d is called a complex valued metric on X and (X, d) is called a complex valued metric space.

Definition 2. Let (X, d) be a complex valued metric space and $\{x_n\}_{n \geq 1}$ be a sequence in X and $x \in X$. We say that:

1. The sequence $\{x_n\}_{n \geq 1}$ converges to x if for every $r \in \mathbb{C}$, with $0 \prec r$ there is a positive integer n_0 such that for all $n > n_0$, $d(x_n, x) \prec r$. We write $x_n \to x$, as $n \to \infty$.

2. The sequence $\{x_n\}_{n \geq 1}$ is Cauchy sequence if for every $r \in \mathbb{C}$, with $0 \prec r$ there is a positive integer n_0 such that for all $n, m > n_0$, $d(x_n, x_m) \prec r$.

3. The metric space (X, d) is a complete complex valued metric space if every Cauchy sequence is convergent.

There are several number of works in contraction type mappings, among these we consider one such mapping namely weakly C-contractive map.

Definition 3. [4] Let (X, d) be a metric space, the map $f : X \to X$ is called weakly C-contractive if

$$d(f(x), f(y)) \leq \frac{1}{2}[d(x, f(y)) + d(y, f(x))] - \phi(d(x, f(y)), d(y, f(x)))$$

(1)

for all $x, y \in X$ and $\phi : [0, \infty)^2 \to [0, \infty)$ is continuous and $\phi(x, y) = 0$ if and only if $x = y = 0$.

In [4], Choudhury proved that in complete metric space, weakly C-contractive self map has a unique fixed point.

2. Main Results

In this section, we present our main results. Before proceed further we first introduce the generalization of weakly C-contractive map.
Definition 4. Let \((X, d)\) be a complex valued metric space, the map \(f : X \rightarrow X\) is called weakly \(C\)-contractive type map if

\[
d(f(x), f(y)) \geq \frac{1}{2}[d(x, f(y)) + d(y, f(x))] - \varphi(M(x, y))
\]

for all \(x, y \in X\) and \(M(x, y) = \max\{Re\ d(x, y), Im\ d(x, y)\}\) with the map \(\varphi : [0, \infty) \rightarrow A = \{a + ib : a, b \in (0, \infty)\} \cup \{0\}\) has the following property:

1. \(\varphi\) is continuous
2. \(x \leq y \Rightarrow \varphi(x) \leq \varphi(y)\)
3. \(\varphi(x) = 0\) if and only if \(x = 0\).

Now we prove our first main result about existence of fixed point of the weakly \(C\)-contractive type map defined on complete complex valued metric space. To prove this result, we need the following lemma in the sequel.

Lemma 1. Let \((X, d)\) be a complex valued metric space and let \(\{x_n\}\) be a sequence in \(X\). Then \(\{x_n\}\) is a Cauchy sequence if and only if to every \(\epsilon > 0\), there is a positive integer \(n_0\) such that \(Re\ d(x_n, x_m) < \epsilon\) and \(Im\ d(x_n, x_m) < \epsilon\), for all \(n, m > n_0\).

Proof. Let \(\{x_n\}\) be a Cauchy sequence and \(\epsilon > 0\) be given. Then take \(0 < r = \epsilon + i\epsilon\), and by the definition of Cauchy sequence there is a positive integer \(n_0\) such that \(d(x_n, x_m) < r\), for all \(n, m > n_0\). Which in turn implies \(Re\ d(x_n, x_m) < \epsilon\) and \(Im\ d(x_n, x_m) < \epsilon\), for all \(n, m > n_0\).

Conversely, let \(0 < r\) be given, then \(Re\ r > 0\) and \(Im\ r > 0\) and by the hypothesis, there are positive integers \(n_1, n_2\) such that \(Re\ d(x_n, x_m) < Re\ r\) and \(Im\ d(x_n, x_m) < Im\ r\), for all \(n, m > n_1\) and \(Re\ d(x_n, x_m) < Im\ r\) and \(Im\ d(x_n, x_m) < Im\ r\), for all \(n, m > n_2\). Let \(n_0 = \max\{n_1, n_2\}\), then \(Re\ d(x_n, x_m) < Re\ r\) and \(Im\ d(x_n, x_m) < Im\ r\), for all \(n, m > n_0\) and hence \(d(x_n, x_m) < r\), for all \(n, m > n_0\), so that \(\{x_n\}\) is a Cauchy sequence.

Theorem 1. Let \((X, d)\) be a complete complex valued metric space and \(f : X \rightarrow X\) be a weakly \(C\)-contractive type map, then \(f\) has a unique fixed point.

Proof. Let \(x_0 \in X\) be an arbitrary point and let \(x_n = f(x_{n-1})\), \(n = 1, 2, 3, \ldots\), Suppose there is some positive integer \(n\) such that \(d(x_n, f(x_n)) = 0\), then \(x_n\) becomes a fixed point of \(f\), which completes the proof. So we assume that \(d(x_n, f(x_n)) \neq 0\) for all \(n \in \mathbb{N}\). Hence we have,

\[
d(x_{n+1}, x_n) = d(f(x_n), f(x_{n-1}))
\]
\[
\begin{align*}
\frac{1}{2}[d(x_n, f(x_{n-1})) + d(x_{n-1}, f(x_n))] - \phi(M(x_n, x_{n-1})) \\
\frac{1}{2}[d(x_{n-1}, x_n) + d(x_n, x_{n+1})] - \phi(M(x_n, x_{n-1}))
\end{align*}
\]

(3)

\[
d(x_{n+1}, x_n) \leq d(x_n, x_{n-1}), n = 1, 2, 3, ...
\]

From this, for \(n = 1, 2, 3, \ldots\), we have, \(Re \ d(x_{n+1}, x_n) \leq Re \ d(x_n, x_{n-1})\) and \(Im \ d(x_{n+1}, x_n) \leq Im \ d(x_n, x_{n-1})\) and which in turn implies \(\{Re \ d(x_{n+1}, x_n)\}\) and \(\{Im \ d(x_{n+1}, x_n)\}\) are decreasing sequences of non-negative real numbers and hence convergent. Let \(\lim_{n \to \infty} Re \ d(x_{n+1}, x_n) = r\) and \(\lim_{n \to \infty} Im \ d(x_{n+1}, x_n) = s\). Since \(Re \ d(x_n, x_{n-1}) \leq M(x_n, x_{n-1})\) and by the property of \(\phi\), we have \(\phi(Re \ d(x_n, x_{n-1})) \leq \phi(M(x_n, x_{n-1}))\) Hence for \(n = 1, 2, 3, \ldots\), the equation (3) becomes

\[
d(x_{n+1}, x_n) \leq \frac{1}{2}[d(x_n, x_{n-1}) + d(x_{n+1}, x_n)] - \phi(Re \ d(x_n, x_{n-1}))
\]

(4)

and therefore,

\[
Re \ d(x_{n+1}, x_n) \leq \frac{1}{2}[Re \ d(x_n, x_{n-1}) + Red(x_{n+1}, x_n)] - Re \ \phi(Re \ d(x_n, x_{n-1}))
\]

(5)

making \(n \to \infty\) on (5) and by the continuity of \(\phi\) we have \(r \leq \frac{1}{2}[r + r] - Re \ \phi(r)\), that is \(Re \ \phi(r) = 0\). Hence, by the property of \(\phi\), \(r = 0\). Thus,

\[
\lim_{n \to \infty} Re \ d(x_{n+1}, x_n) = 0
\]

(6)

Similarly,

\[
\lim_{n \to \infty} Im \ d(x_{n+1}, x_n) = 0.
\]

(7)

Now we have to prove that the sequence \(\{x_n\}\) is a Cauchy sequence. Arguing by contradiction, using lemma (1) we may assume that there is an \(\epsilon > 0\) and the sequences \(\{a(n)\}\) and \(\{b(n)\}\) of positive integers such that \(a(n) > b(n) > n\), \(Re \ d(x_{a(n)}, x_{b(n)}) \geq \epsilon\) and \(Re \ d(x_{a(n)-1}, x_{b(n)}) < \epsilon\), for all positive integers \(n\). Now,

\[
\epsilon \leq Re \ d(x_{a(n)}, x_{b(n)}) = Re \ d(f(x_{a(n)-1}), f(x_{b(n)-1}))
\]

\[
\leq \frac{1}{2}[Re \ d(x_{a(n)-1}, x_{b(n)}) + Re \ d(x_{b(n)-1}, x_{a(n)})] - Re \ \phi(Re \ d(x_{a(n)-1}, x_{b(n)-1}))
\]

(8)
Also

\[\epsilon \leq \text{Re } d(x_{a(n)}, x_{b(n)}) \]
\[\leq \text{Re } d(x_{a(n)}, x_{a(n)-1}) + \text{Re } d(x_{a(n)-1}, x_{b(n)}) \]
\[\leq \text{Re } d(x_{a(n)}, x_{a(n)-1}) + \epsilon \] \hspace{1cm} (9)

making \(n \to \infty \) on (9) and using (6) we get,

\[\lim_{n \to \infty} \text{Re } d(x_{a(n)}, x_{b(n)}) = \epsilon \] and \[\lim_{n \to \infty} \text{Re } d(x_{a(n)-1}, x_{b(n)}) = \epsilon \] \hspace{1cm} (10)

Next

\[\epsilon \leq \text{Re } d(x_{a(n)}, x_{b(n)}) \]
\[\leq \text{Re } d(x_{a(n)}, x_{a(n)-1}) + \text{Re } d(x_{a(n)-1}, x_{b(n)-1}) \]
\[+ \text{Re } d(x_{b(n)-1}, x_{b(n)}) \] \hspace{1cm} (11)

\[\text{Re } d(x_{a(n)-1}, x_{b(n)-1}) \leq \text{Re } d(x_{a(n)-1}, x_{a(n)}) + \text{Re } d(x_{a(n)}, x_{b(n)}) \]
\[+ \text{Re } d(x_{b(n)}, x_{b(n)-1}) \] \hspace{1cm} (12)

making \(n \to \infty \) on both inequalities (11) and (12) together with equations (6) and (10), we obtain

\[\lim_{n \to \infty} \text{Re } d(x_{a(n)-1}, x_{b(n)-1}) = \epsilon \] \hspace{1cm} (13)

Also

\[\text{Re } d(x_{a(n)-1}, x_{b(n)}) \leq \text{Re } d(x_{a(n)-1}, x_{a(n)}) + \text{Re } d(x_{a(n)}, x_{b(n)-1}) \]
\[+ \text{Re } d(x_{b(n)-1}, x_{b(n)}) \]

\[\text{Re } d(x_{a(n)}, x_{b(n)-1}) \leq \text{Re } d(x_{a(n)}, x_{a(n)-1}) + \text{Re } d(x_{a(n)-1}, x_{b(n)-1}) \]

making \(n \to \infty \) on the above two inequalities and using (6), (10), (13) we get,

\[\lim_{n \to \infty} \text{Re } d(x_{a(n)}, x_{b(n)-1}) = \epsilon \] \hspace{1cm} (14)

now allow \(n \to \infty \) in (8) and using (10), (13), (14) with the continuity of \(\phi \) we have \(\epsilon \leq \frac{1}{2} \epsilon \leq \epsilon + \epsilon \) \hspace{1cm} (15)

We have \(\text{Re } \phi(\epsilon) = 0 \) and by the property of \(\phi \), we have \(\epsilon = 0 \). Which is a contradiction to \(\epsilon > 0 \), so that \(\{x_n\} \) is a Cauchy sequence and since \(X \) is complete, there is a \(p \in X \) so that \(x_n \to p \), as \(n \to \infty \).
Next we prove that this p is a fixed point of f.

\[
d(p, f(p)) \leq d(p, x_{n+1}) + d(f(x_n), f(p)) \\
\leq d(p, x_{n+1}) + \frac{1}{2}[d(x_n, f(p)) + d(p, f(x_n))] - \phi(M(x_n, p))
\]

\[
Re \, d(p, f(p)) \leq Re(d(p, x_{n+1}) + \frac{1}{2}[Red(x_n, p) + Re \, d(p, f(p)) \\
+ Re \, d(p, x_{n+1})] - Re \, \phi(Re \, d(x_n, p))
\]

which on making $n \to \infty$ by using continuity of ϕ and lemma 2 (see [1]), we have

\[
Re \, d(p, f(p)) \leq \frac{1}{2}Re \, d(p, f(p)) - Re \, \phi(0) \leq \frac{1}{2}Re \, d(p, f(p))
\]

which is possible only if $Re \, d(p, f(p)) = 0$. Similarly, we have $Im \, d(p, f(p)) = 0$. Thus, $d(p, f(p)) = 0$ and therefore $f(p) = p$. To prove the uniqueness, suppose for p and q are two fixed points of f. Now, $d(p, q) = d(f(p), f(q)) \leq \frac{1}{2}[d(p, f(q)) + d(q, f(p))] - \phi(M(p, q))$ and $0 \leq -\phi(Re \, d(p, q))$ by the property of ϕ, $Re \, d(p, q) = 0$ and similarly $Im \, d(p, q) = 0$, so that $d(p, q) = 0$ or $p = q$ completes the proof.

In [6], Rao et. al., introduced the complex valued b-metric space and studied their consequences. Now, we extended Theorem 1 in complete complex valued b-metric spaces as follows.

Theorem 2. Let (X, d) be a complete complex valued b-metric space with $s > 1$ and the map $f : X \to X$ satisfies

\[
d(f(x), f(y)) \leq \frac{1}{2s^4}[d(x, f(y)) + d(y, f(x))] - \phi(M(x, y)) \tag{15}
\]

for all $x, y \in X$ with ϕ and $M(x, y)$ as in definition 8. Then f has a unique fixed point (Note that here the weakly C-contractive type map depend on s).

Proof. Let $x_0 \in X$ be an arbitrary point and let $x_n = f(x_{n-1}), n = 1, 2, 3...$ If some positive integer n such that $d(x_n, f(x_n)) = 0$, then x_n becomes a fixed point of f, which completes the proof. So we assume that $d(x_n, f(x_n)) \neq 0$, for all n. As in theorem 1, we can easily shows that

\[
\lim_{n \to \infty} Re \, d(x_{n+1}, x_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} Im \, d(x_{n+1}, x_n) = 0. \tag{16}
\]

because,

\[
d(f(x), f(y)) \leq \frac{1}{2s^4}[d(x, f(y)) + d(y, f(x))] - \phi(M(x, y)) \\
\leq \frac{1}{2}[d(x, f(y)) + d(y, f(x))] - \phi(M(x, y))
\]

Now we have to prove that the sequence $\{x_n\}$ is a Cauchy sequence. Arguing by contradiction, using Lemma (1) we may assume that there is an $\epsilon > 0$ and
the sequences \(\{a(n)\} \) and \(\{b(n)\} \) of positive integers such that \(a(n) > b(n) > n \), \(\text{Re} \ d(x_{a(n)}, x_{b(n)}) \geq \epsilon \) and \(\text{Re} \ d(x_{a(n)−1}, x_{b(n)}) < \epsilon \), for all positive integers \(n \). Now,

\[
\epsilon \leq \text{Re} \ d(x_{a(n)}, x_{b(n)}) = \text{Re} \ d(f(x_{a(n)−1}), f(x_{b(n)−1})) \\
\leq \frac{1}{2s^4} [\text{Re} \ d(x_{a(n)−1}, x_{b(n)}) + \text{Re} \ d(x_{a(n)}, x_{b(n)−1})] \\
- \text{Re} \ \phi(\text{Re} \ d(x_{a(n)−1}, x_{b(n)−1})) \quad (17)
\]

also

\[
\epsilon \leq \text{Re} \ d(x_{a(n)}, x_{b(n)}) \\
\leq s[\text{Re} \ d(x_{a(n)}, x_{a(n)−1}) + \text{Re} \ d(x_{a(n)−1}, x_{b(n)})] \\
\leq s \text{Re} \ d(x_{a(n)}, x_{a(n)−1}) + s\epsilon \quad (18)
\]

so from (16), we get

\[
\epsilon \leq \limsup_{n \to \infty} \text{Re} \ d(x_{a(n)}, x_{b(n)}) \leq s\epsilon \quad (19)
\]

and

\[
\frac{\epsilon}{s} \leq \limsup_{n \to \infty} \text{Re} \ d(x_{a(n)−1}, x_{b(n)}) \leq \epsilon \quad (20)
\]

Next

\[
\epsilon \leq \text{Re} \ d(x_{a(n)}, x_{b(n)}) \\
\leq s \text{Re} \ d(x_{a(n)}, x_{a(n)−1}) + s^2 \text{Re} \ d(x_{a(n)−1}, x_{b(n)−1}) \\
+ s^2 \text{Re} \ d(x_{b(n)−1}, x_{b(n)}) \quad (21)
\]

\[
\text{Re} \ d(x_{a(n)−1}, x_{b(n)−1}) \leq s \text{Re} \ d(x_{a(n)−1}, x_{a(n)}) + s^2 \text{Re} \ d(x_{a(n)}, x_{b(n)}) \\
+ s^2 \text{Re} \ d(x_{b(n)}, x_{b(n)−1}) \quad (22)
\]

It follows from (16), (19), (21) and (22) that

\[
\frac{\epsilon}{s^2} \leq \limsup_{n \to \infty} \text{Re} \ d(x_{a(n)−1}, x_{b(n)−1}) \leq s^3\epsilon \quad (23)
\]

Also, we can show that

\[
\frac{\epsilon}{s^2} \leq \liminf_{n \to \infty} \text{Re} \ d(x_{a(n)−1}, x_{b(n)−1}) \leq s^3\epsilon \quad (24)
\]
Further

\[Re \, d(x_{a(n)-1}, x_{b(n)}) \leq s \, Re \, d(x_{a(n)-1}, x_{a(n)}) + s^2 \, Re \, d(x_{a(n)}, x_{b(n)-1}) \]
\[+ s^2 \, Re \, d(x_{b(n)-1}, x_{b(n)}) \]
\[Re \, d(x_{a(n)}, x_{b(n)-1}) \leq s \, Re \, d(x_{a(n)}, x_{a(n)-1}) + s \, Re \, d(x_{a(n)-1}, x_{b(n)-1}) \]

From the above two inequalities with (16), (20) and (23), we get

\[\frac{\epsilon}{s^3} \leq \limsup_{n \to \infty} Re \, d(x_{a(n)}, x_{b(n)-1}) \leq s^4 \epsilon \quad (25) \]

Now using (17), (20), (23) and (25) we have

\[\epsilon \leq \frac{1}{2s^4}[s^4 \epsilon + s^4 \epsilon] + \limsup_{n \to \infty} [-Re \, \phi(Re \, d(x_{a(n)-1}, x_{b(n)-1}))] \]
\[0 \leq - \liminf_{n \to \infty} [Re \, \phi(Re \, d(x_{a(n)-1}, x_{b(n)-1}))] \]

\[\liminf_{n \to \infty} Re \, \phi(Re \, d(x_{a(n)-1}, x_{b(n)-1})) = 0 \text{ as } Re \, \phi(.) \geq 0. \]

Take

\[\alpha_n = Re \, d(x_{a(n)-1}, x_{b(n)-1}), \]

then \(\liminf_{n \to \infty} Re \, \phi(\alpha_n) = 0. \) Therefore, there is a subsequence \(\{\alpha_{n_k}\} \) such that

\[\lim_{k \to \infty} Re \, \phi(\alpha_{n_k}) = 0. \]

Since \(\phi \) is continuous, we have \(Re \, \phi(\lim_{k \to \infty} \alpha_{n_k}) = \lim_{k \to \infty} Re \, \phi(\alpha_{n_k}) = 0. \) Also by the property of \(\phi \), we obtain \(\lim_{k \to \infty} \alpha_{n_k} = 0, \) which in turn implies \(\liminf_{n \to \infty} \alpha_n \leq 0. \) That is \(\liminf Re(d(x_{a(n)-1}, x_{b(n)-1})) \leq 0, \) which is a contradiction to (24). So that \(\{x_n\} \) is a Cauchy sequence and the rest of the proof is followed by Theorem 1.

References