THE FORCING EDGE STEINER NUMBER OF A GRAPH

A. Siva Jothi1,\dagger, J. John2, S. Robinson Chellathurai3

1Department of Mathematics
Marthandam College of Engineering and Technology
Kuttakuzhi, 629 177, INDIA

2Department of Mathematics
Government College of Engineering
Tirunelveli, 627 001, INDIA

3Department of Mathematics
Scott Christian College
Nagercoil, 629 003, INDIA

Abstract: For a connected graph $G = (V,E)$, a set $W \subseteq V(G)$ is called an edge Steiner set of G if every edge of G is contained in a Steiner W-tree of G. The edge Steiner number $s_1(G)$ of G is the minimum cardinality of its edge Steiner sets and any edge Steiner set of cardinality $s_1(G)$ is a minimum edge Steiner set of G. For a minimum edge Steiner set W of G, a subset $T \subseteq W$ is called a forcing subset for W if W is the unique minimum edge Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing edge Steiner number of W, denoted by $fs_1(W)$, is the cardinality of a minimum forcing subset of W. The forcing edge Steiner number of G, denoted by $fs_1(G)$, is $fs_1(G) = \min\{fs_1(W)\}$, where the minimum is taken over all minimum edge Steiner sets W in G. Some general properties satisfied by this concept are studied. The forcing edge Steiner numbers of certain classes of graphs are determined. It is shown for every pair of integers with $0 \leq a \leq b$, $b \geq 2$ and $b - a - 1 > 0$, there exists a connected graph G such that $fs_1(G) = a$ and $s_1(G) = b$.

AMS Subject Classification: 05C12

Key Words: Steiner distance, Steiner number, edge Steiner number, forcing Steiner number, forcing edge Steiner number

© 2018 Academic Publications, Ltd.
\url{www.acadpubl.eu}
1. Introduction

By a graph $G = (V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. The distance $d(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u - v$ path in G. An $u - v$ path of length $d(u, v)$ is called an $u - v$ geodesic. For basic graph theoretic terminology, we refer to Harary [1]. For a non-empty set W of vertices in a connected graph G, the Steiner distance $d(W)$ of W is the minimum size of a connected subgraph of G containing W. Necessarily, each such subgraph is a tree and is called a Steiner tree with respect to W or a Steiner W-tree. It is to be noted that $d(W) = d(u, v)$, when $W = \{u, v\}$. The set of all vertices of G that lie on some Steiner W-tree is denoted by $S(W)$. If $S(W) = V$, then W is called a Steiner set for G. A Steiner set of minimum cardinality is a minimum Steiner set or simply a s-set of G and this cardinality is the Steiner number $s(G)$ of G. The Steiner number of a graph was introduced and studied in [2] and further studied in [3,4,5,6]. When $W = \{u, v\}$, every Steiner W-tree in G is a $u - v$ geodesic. Also $S(W)$ equals the set of vertices lying in $u - v$ geodesic inclusive of u,v. Hence Steiner sets, Steiner numbers can be consider as extensions of geodesic concepts. For the graph G given in Figure 1.1, $W = \{v_1, v_6, v_7\}$ is a minimum Steiner set of G so that $s(G) = 3$.

![Figure 1.1](image-url)

A subset $T \subseteq S$ is called a forcing subset for S if S is the unique minimum Steiner set containing T. A forcing subset for S of minimum cardinality is a minimum forcing subset of S. The forcing Steiner number of S, denoted by $f(S)$, is the cardinality of a minimum forcing subset of S. The forcing Steiner number of G, denoted by $f(G)$, is $f(G) = \min\{f(S)\}$, where the minimum is taken over all minimum Steiner sets S in G. The forcing Steiner number of a graph was introduced and studied in [2] and further studied in [4,6]. An edge Steiner set of G is a set $W \subseteq V(G)$ such that every edge of G is contained in a
Steiner W-tree. The edge Steiner number $s_1(G)$ is the minimum cardinality of its edge Steiner sets and any edge Steiner set of cardinality $s_1(G)$ is a minimum edge Steiner set or simply a s_1-set of G. For the graph G given in Figure 1.2, $W = \{v_3, v_5\}$ is a minimum Steiner set of G so that $s(G) = 2$ and $W_1 = \{v_1, v_2, v_4\}$ is a minimum edge Steiner set of G so that $s_1(G) = 3$.

A vertex v is an extreme vertex of a graph G if the subgraph induced by its neighbors is complete. Throughout the following denotes a connected graph with at least two vertices. The following theorems are used in the sequel.

Theorem 1.1. [5] Each extreme vertex of a graph G belongs to every edge Steiner set of G.

Theorem 1.2. [5] For the complete graph $G = K_p$, $s_1(G) = p$.

2. The Forcing edge Steiner Number of a Graph

Even though every connected graph contains a minimum edge Steiner set, some connected graphs may contain several minimum edge Steiner sets. For each minimum edge Steiner set W in a connected graph G, there is always some subset T of W that uniquely determines W as the minimum edge Steiner set containing T. Such “forcing subsets” will be considered in this section.

Definition 2.1. Let G be a connected graph and W a minimum edge Steiner set of G. A subset $T \subseteq W$ is called a forcing subset for W if W is the unique minimum edge Steiner set containing T. A forcing subset for W of minimum cardinality is a minimum forcing subset of W. The forcing edge Steiner number of W, denoted by $fs_1(W)$, is the cardinality of a minimum
forcing subset of \(W \). The forcing edge Steiner number of \(G \), denoted by \(f_s_1(G) \), is \(f_s_1(G) = \min \{ f_s_1(W) \} \), where the minimum is taken over all minimum edge Steiner sets \(W \) in \(G \).

Example 2.2. For the graph \(G \) given in Figure 1.1, \(W_1 = \{ v_1, v_6, v_7 \} \) is the unique minimum edge Steiner set of \(G \) so that \(f_s_1(G) = 0 \). For the graph \(G \) given in Figure 2.1, \(W_1 = \{ v_1, v_2, v_4, v_5 \} \) and \(W_2 = \{ v_1, v_3, v_4, v_6 \} \) are the only two minimum edge Steiner sets of \(G \). It is clear that \(f_s_1(W_1) = f_s_1(W_2) = 1 \) and so \(f_s_1(G) = 1 \).

The next theorem follows immediately from the definitions of the edge Steiner number and the forcing edge Steiner number of a connected graph \(G \).

Theorem 2.3. For every connected graph \(G \), \(0 \leq f_s_1(G) \leq s_1(G) \)

The following theorem characterizes graphs \(G \) for which the bounds in the Theorem 2.3 attained and also graph for which \(f_s_1(G) = 1 \). Since the proof of the theorem is straightforward, we omit it.

Theorem 2.4. Let \(G \) be a connected graph. Then

i) \(f_s_1(G) = 0 \) if and only if \(G \) has a unique minimum edge Steiner set.

\[\text{i)}\ f_s_1(G) = 0 \text{ if and only if } G \text{ has a unique minimum edge Steiner set.}\]

ii) \(f_s_1(G) = 1 \) if and only if \(G \) has at least two minimum edge Steiner sets, one of which is a unique minimum edge Steiner set containing one of its elements, and

\[\text{ii)}\ f_s_1(G) = 1 \text{ if and only if } G \text{ has at least two minimum edge Steiner sets, one of which is a unique minimum edge Steiner set containing one of its elements.}\]

iii) \(f_s_1(G) = s_1(G) \) if and only if no minimum edge Steiner set of \(G \) is the unique minimum edge Steiner set containing any of its proper subsets.

Definition 2.5. A vertex \(v \) of a graph \(G \) is said to be an edge Steiner vertex if \(v \) belongs to every minimum edge Steiner set of \(G \).
Example 2.6. For the graph G given in Figure 2.2, $W_1 = \{v_1, v_3, v_4\}$ and $W_2 = \{v_1, v_3, v_5\}$ are the only two minimum edge Steiner sets of G so that v_1 and v_3 are the edge Steiner vertices of G.

![Figure 2.2](image_url)

Theorem 2.7. Let G be a connected graph and W the set of all edge Steiner vertices of G. Then $f_{s_1}(G) \leq s_1(G) - |W|$.

Proof. Let S be any minimum edge Steiner set of G. Then $s_1(G) = |S|$, $W \subseteq S$ and S is the unique minimum edge Steiner set containing $S - W$. Thus $f_{s_1}(G) \leq |S - W| = |S| - |W| = s_1(G) - |W|$. \qed

Corollary 2.8. If G is a connected graph with k extreme vertices, then $f_{s_1}(G) \leq s_1(G) - k$.

Proof. This follows from Theorems 1.1 and 2.7. \qed

Remark 2.9. The bound in Theorem 2.7 is sharp. For the graph G given in Figure 2.2, $S_1 = \{v_1, v_3, v_4\}$ and $S_2 = \{v_1, v_3, v_5\}$ are the only two s_1-sets so that $s_1(G) = 3$ and $f_{s_1}(G) = 1$. Also, $W = \{v_1, v_3\}$ is the set of all edge Steiner vertices of G and so $f_{s_1}(G) = s_1(G) - |W|$. Also, the inequality in Theorem 2.7 can be strict. For the graph G given in Figure 2.1, $s_1(G) = 4$ and $f_{s_1}(G) = 1$. Since $W = \{v_1, v_4\}$ is the set of all edge Steiner vertices of G, we have and so $f_{s_1}(G) \leq s_1(G) - |W|$.

In the following we determine the forcing edge Steiner numbers of certain standard graphs.
Theorem 2.10. For an even cycle $G = C_p (p \geq 4)$, a set $S \subseteq V$ is a s_1-set if and only if S consists of two antipodal vertices. In particular for an even cycle $G = C_p$, $s_1(G) = 2$.

Proof. If S consists of two antipodal vertices, then it is clear that S is a s_1-set of C_p. Conversely, let S be any s_1-set of C_p. Then $s(C_p) = |S|$. Then it follows from the first part of the proof that S consists of two vertices, say $S = \{u, v\}$. If u and v are not antipodal, then any edge that is not on the $u - v$ geodesic does not lie on the Steiner S-tree. Thus S is not a s_1-set, which is a contradiction.

Theorem 2.11. For a cycle $C_p \ (p \geq 4)$, $f_s(C_p) = \begin{cases} 1 & \text{if } p \text{ is even} \\ 2 & \text{if } p \text{ is odd}. \end{cases}$

Proof. For p is even, it follows from Theorem 2.10 that C_p contains $p/2$ s_1-sets and it is clear that each singleton set is the minimum forcing set for exactly one s_1 of C_p. Hence it follows from Theorem 2.4 (i) that $f_s(C_p) = 1$.

Let p be odd and $p = 2n + 1$. Let the cycle be $C_p : v_1, v_2, \ldots, v_n, v_{n+1}, v_{n+2}, \ldots, v_{2n+1}, v_1$. If $S = \{u, v\}$ is any set of two vertices of C_p, then no edge on the $u - v$ longest path lies on the Steiner S-tree in C_p and so no two element subset of C_p is a Steiner set of C_p. Now, it is clear that the sets $S_1 = \{v_1, v_{n+1}, v_{n+2}\}, S_2 = \{v_2, v_{n+2}, v_{n+3}\}, \ldots, S_{n+2} = \{v_{n+2}, v_1, v_2\}, \ldots, S_{2n+1} = \{v_{2n+1}, v_n, v_{n+1}\}$ are s_1-sets of C_p (Note that there are more s-sets of C_p, for example, $S' = \{v_1, v_{n+1}, v_{n+3}\}$ is a s_1-set different from these). It is clear from the s_1-sets $S_i \ (1 \leq i \leq 2n + 1)$ that each $\{v_i\}(1 \leq i \leq 2n + 1)$ is a subset of more than one s_1-set S_i. Hence it follows from Theorem 2.4 (i) and (ii) that $f_s(C_p) \geq 2$. Now, since v_{n+1} and v_{n+2} are antipodal to v_1, it is clear that S_1 is the unique s_1-set containing $\{v_{n+1}, v_{n+2}\}$ and so $f_s(C_p) = 2$.

Theorem 2.12. For the complete graph $G = K_p \ (p \geq 2), f_s(G) = 0$.

Proof. Since $W = V(G)$ is the unique minimum s_1-set of G, the result follows from Theorem 2.4(i).

Theorem 2.13. For the complete bipartite graph $G = K_{m,n} \ (m,n \geq 2)$,

$$f_s(K_{m,n}) = \begin{cases} 0 & \text{if } m \neq n \\ 1 & \text{if } m = n. \end{cases}$$
Proof. First assume that $m < n$. Let $U = \{u_1, u_2, \ldots, u_m\}$ and $W = \{w_1, w_2, \ldots, w_n\}$ be the bipartition sets of G. Let $S = U$. We prove that S is a s_1-set of G. Any Steiner S-tree T is a star centered at w_j ($1 \leq j \leq n$) with u_i ($1 \leq i \leq m$) as end vertices of T. Hence every edge of G lies on a Steiner S-tree of G so that S is an edge Steiner set of G. Let X be any set of vertices such that $|X| < |S|$. Then there exists a vertex $u_i \in U$ such that $u_i \notin X$. Since any Steiner X-tree is a star centered at w_j ($1 \leq j \leq n$), whose end-vertices are elements of X, the edge $w_j u_i$ does not lie on any Steiner X-tree of G. Thus X is not an edge Steiner set of G. Hence S is a s_1-set so that $s_1(K_{m,n}) = |S| = m$. Now, let S_1 be a set of vertices such that $|S_1| = m$. If S_1 is a subset of W, then since $m < n$, there exists a vertex $w_j \in W$ such that $w_j \notin S_1$. Then the edges $w_j u_i$ do not lie on any Steiner S_1-tree of G. If $S_1 U \cup W$ such that S_1 contains at least one vertex from each of U and W, then since $S_1 \neq U$, there exists vertices $u_i \in U$ and $w_j \in W$ such that $u_i \notin S_1$ and $w_j \notin S_1$. Then clearly the edges $u_i w_j$ do not lie on any Steiner S_1-tree of G and so S_1 is not a Steiner set of G. It follows that U is the unique s_1-set of G. Hence it follows from Theorem 2.4(i) that $fs_1(G) = 0$. Now, let $m = n$. Then as in the first part of this theorem, both U and W are s_1-sets of G. Now, let S' be any set of vertices such that $|S'| = m$ and $S' \neq U, W$. Then there exist vertices $u_i \in U$ and $w_j \in W$ such that $u_i \notin S'$ and $w_j \notin S'$. Then as earlier, S' is not an edge Steiner set of G. Hence it follows that U and W are the only s_1-sets of G. Since U is the unique edge Steiner set containing $\{u_i\}$, it follows that $fs_1(G) = 1$. \hfill \Box

Theorem 2.14. If $S = \{u, v\}$ is a s_1-set of a connected graph G, then u and v are antipodal vertices of G.

Proof. Let $S = \{u, v\}$ be a s_1-set of G. Then every edge of G lies on a Steiner S-tree of G. Hence every vertex of G lies on a Steiner S-tree of G. Since every Steiner S-tree is a $u-v$ geodesic, every vertex of G lies on a geodesic joining u and v. We claim that $d(u, v) = d(G)$. If $d(u, v) < d(G)$, then let x and y be two vertices of G such that $d(x, y) = d(G)$. Now, it follows that x and y lie on distinct geodesics joining u and v. Hence $d(u, v) = d(u, x) + d(x, v) \ldots$ (1) and $d(u, v) = d(u, y) + d(y, v) \ldots$ (2). By the triangle inequality, $d(x, y) < d(x, u) + d(u, y) \ldots$ (3). Since $d(u, v) < d(x, y)$, (3) becomes $d(u, v) < d(x, u) + d(u, y) \ldots$ (4). Using (4) in (1), $d(x, v) < d(u, y) \ldots$ (5). Also, by triangle inequality, we have $d(x, y) \leq d(x, v) + d(v, y) \ldots$ (6). Now, using (5) and (2),(6) becomes $d(x, y) < d(u, y) + d(v, y) = d(u,v)$. Thus, $d(G) < d(u, v)$, which is a contradiction. Hence $d(u, v) = d(G)$ and so u and v are antipodal vertices of G. \hfill \Box
Theorem 2.15. If G is a connected graph with $s_1(G) = 2$, then $f_{s_1}(G) \leq 1$.

Proof. Let $S = \{u, v\}$ be any s_1-set of G. Then by Theorem 2.14, u and v are antipodal vertices of G. Suppose that $f_{s_1}(G) = 2$. It follows from Theorem 2.4(iii) that S is not the unique s_1-set containing u and so there exists $x \neq u$ such that $S' = \{u, x\}$ is also a s_1-set of G. By Theorem 2.14, u and x are two antipodal vertices of G and v is an internal vertex of some $u - x$ geodesic in G. Therefore, $d(u, v) < d(u, x)$, which is a contradiction. □

Theorem 2.16. If G is a connected geodetic graph with $s_1(G) = 2$, then $f_{s_1}(G) = 0$.

Proof. Let $s_1(G) = 2$. Let $W = \{u, v\}$ be a minimum edge Steiner set of G. Then it is clear that every edge of G lies on a $u - v$ geodesic. Since G is a geodetic graph it follows that $G = P_n$. Hence it follows from Theorem 2.4(i) that $f_{s_1}(G) = 0$. □

Theorem 2.17. Let G be a connected graph with $s(G) = s_1(G)$. Then, $f_{s_1}(G) \leq f_s(G)$.

Proof. Let T be any forcing subset of any s-set. We show that T is a forcing subset of a s_1-set of G. Otherwise, T is a subset of more than one s_1-set. Since every edge Steiner set of G is a set Steiner set of G and since $s(G) = s_1(G)$, it follows that T is a subset of more than one s-set of G, which is a contradiction. Thus every forcing subset of any s-set of G is also a forcing subset of a s_1-set of G. Hence $f_{s_1}(G) \leq f_s(G)$. □

Theorem 2.18. For every pair a, b of integers with $0 \leq a < b$, b^2 and $b - a - 1 > 0$, there exists a connected graph G such that $f_{s_1}(G) = a$ and $s_1(G) = b$.

Proof. If $a = 0$, let $G = K_b$. Then by Theorem 2.11, $f_{s_1}(G) = 0$ and by Theorem 1.2, $s_1(G) = b$. Now, we assume that $a1$. Let $F_i : s_i, t_i, u_i, v_i, r_i, s_i (1 \leq i \leq a)$ be a copy of the cycle C_5. Let G be the graph obtained from F_i (1 \leq i \leq a) by first identifying the vertices r_{i-1} of F_{i-1} and t_i of $F_i (2 \leq i \leq a)$ and then adding the $b - a$ new vertices $z_1, z_2, ..., z_{b-a-1}, u$ and joining the $b - a$ edges $t_1z_i (1 \leq i \leq b - a - 1)$ and r_au. The graph G is given in Figure 2.3. Let $Z = \{z_1, z_2, ..., z_{b-a-1}, u\}$ be the set of end-vertices of G. By Theorem 1.1, every s_1-set contains Z. Let $H_i = \{u_i, v_i\} (1 \leq i \leq a)$.
First we show that $s_1(G) = b$. Since the edges u_iv_i do not lie on the unique Steiner Z-tree of G, it is clear that Z is not an edge Steiner set of G. Hence it follows from Theorem 1.1 that every s_1-set of G must contain exactly one vertex from each H_i ($1 \leq i \leq a$) and so $s_1(G) = b - a + a = b$. On the other hand, since the set $W_1 = Z \cup \{v_1, v_2, \ldots, v_a\}$ is an edge Steiner set of G, it follows that $s_1(G) \leq |W_1| = b$. Thus, $s_1(G) = b$.

Next, we show that $fs_1(G) = a$. By Theorem 1.1, every edge Steiner set of G contains Z and so it follows from Theorem 2.7 that $fs_1(G) \leq s_1(G) - |Z| = b - (b - a) = a$. Now, since $s_1(G) = b$ and every $s_1(G)$-set of G contains Z, it is easily seen that every $s_1(G)$-set S is of the form $Z \cup \{c_1, c_2, \ldots, c_a\}$, where $c_i \in H_i$ ($1 \leq i \leq a$). Let T be any proper subset of S with $|T| < a$. Then there is a vertex c_j ($1 \leq j \leq a$) such that $c_j \notin T$. Let d_j be a vertex of H_j distinct from c_j. Then $S_1 = (S - \{c_j\}) \cup \{d_j\}$ is a s_1-set properly containing T. Thus S is not the unique s_1-set containing T and so T is not a forcing subset of S. This is true for all s_1-sets of G and so $fs_1(G) = a$.

\[\square\]

Figure 2.3

References

