IJPAM: Volume 119, No. 4 (2018)

Title

MAIN SCALARS FOR A THREE DIMENSIONAL FINSLER
SPACE WITH A GENERAL $\left({\alpha ,\beta }\right)$-METRIC

Authors

Afsoon Goodarzian$^1$, Megerdich Toomanian$^2$,
and Mehdi Nadjafkhah$^3$
$^{1,2}$Department of Mathematics, Karaj Branch
Islamic Azad University
Karaj, I.R. IRAN
$^3$Department of Pure Mathematics
School of Mathematics
Iran University of Science and Technology, Narmak
Tehran, 16846-13114, I.R. IRAN

Abstract

In this paper, we find the main scalars of a three dimensional Finsler space equipped with a general $ \left(\alpha,\beta\right)$-metric $ F=\alpha+\kappa\beta+{{\varepsilon\beta}^{2}}/{\alpha} $ (where $ \kappa $ and $ \varepsilon $ are constants which are not zero simultaneously). Consequently, we will obtain results that give the main scalars of special three dimensional $ \left(\alpha,\beta\right)$-metrics such as square metric $ F=(\alpha+\beta )^2/\alpha $ and the first approximate matsumoto metric $ F=\alpha+\beta+{{\beta}^{2}}/{\alpha} $. Moreover, we present a sufficient and necessary condition for Finsler spaces equipped with $ \left(\alpha,\beta\right)$-metrics to be Riemannian spaces. Some fundamental theorems on main scalars of three dimensional Finsler spaces has also been dealt.

History

Received: March 13, 2018
Revised: August 3, 2018
Published: August 10, 2018

AMS Classification, Key Words

AMS Subject Classification: 58B20, 58J60
Key Words and Phrases: three dimensional Finsler space, $(\alpha,\beta)$-metric, Moor's frame, main scalar, the first matsumoto metric, square metric, Cartan tensor vector

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. Matsumoto, Theory of Finsler spaces with $(\alpha,\beta)$-Metrics, Rep. Math. Phys., 31, No. 1 (1992), 43-83, DOI: 10.1016/0034-4877(92)90005-L.

2
T. N. Pandey, B. N. Prasad, V. K. Chaubey, On three-dimensional Finsler spaces with $(\alpha,\beta)$-Metric, The Aigrah Bull. of Maths, 28, No. 1-2 (2009).

3
G. Randers, On an asymmetric metric in the four space of general relativity, Phys. Rev., 59, (1941), 195-199, DOI: https://doi.org/10.1103/PhysRev.59.195.

4
Z. Shen, C. Yu, On Einstein square metrics, preprint, arXiv: 1209.3876, (2012).

5
H. S. Park, I. Y. Lee, C. K. Park, Finsler space with the general approximate Matsumoto metric, Indian J. Pure. Appl. Math., 34, No. 1 (2002), 59-77.

6
P. L. Antonelli, I. Bucataru, S. F. Rutz, Computer algebra and two and three dimensional Finsler geometry, Publ. Math. DebrecenProof-sheets for paper Ref., 34, No. 2872 (2003), 1-24.

7
M. K. Gupta, P. N. Pandey, Relations between the main scalars of a four-dimensional Finsler space and its hypersurface, Differ. Geom. Dyn. Syst, (2008), 132-138.

8
S. K. Narasimhamurthy, D. M. Vasantha, Projective change between randers metricand special $ \left(\alpha,\beta\right)$-metric, Journal of Informatics and Mathematical Sciences, 4, No. 3 (2012), 293-303.

9
A. Goodarzian, M. Nadjafikhah, M.Toomanian, On Main Scalar of Two Dimentional Finsler Spaces with $ \left(\alpha,\beta\right)$-Metrics, International Journal of Applied Mathematics $\&$ Statistics, 57, No. 3 (2018).

How to Cite?

DOI: 10.12732/ijpam.v119i4.9 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 119
Issue: 4
Pages: 661 - 683


$\left({\alpha ,\beta }\right)$-METRIC%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).