SUBMERSION OF SEMI-INVARIANT SUBMANIFOLDS OF LORENTZIAN PARA-SASAKIAN MANIFOLDS

Vibha Srivastava1§, P.N. Pandey2
1,2Department of Mathematics
University of Allahabad
Allahabad, 211002, INDIA

Abstract: In this paper, we discuss submersion of semi-invariant submanifolds of Lorentzian para-Sasakian manifolds and derive some results on its geometry. We also derive some curvature relations.

AMS Subject Classification: 53C40, 53B25
Key Words: Lorentzian para-Sasakian manifolds, semi-invariant submanifold, submersion

1. Introduction

In 1966, O’Neill [1] initiated the study of Riemannian submersion. Semi-Riemannian submersion was introduced by O’Neill in [2]. In 1981, Kobayashi [3] studied CR-Submanifold of Sasakian manifold whereas Benjancu [4, 5] introduced the CR-submanifolds of Kähler manifold. Submersion of CR-submanifolds of nearly trans-Sasakian manifold were studied by Jamali and shahid [6]. Submersion of semi-invariant submanifolds of trans-Sasakian manifold were studied by Jamali et al [7]. In [8], Matsumoto introduced the notion of Lorentzian para-Sasakian manifold. In [9], the authors defined the same notion independently and they obtained many results about this type of manifold. In this paper we studied submersion of semi-invariant submanifolds of Lorentzian para-Sasakian manifolds.

Received: October 27, 2017
Revised: August 13, 2018
Published: August 20, 2018

§Correspondence author
2. Preliminaries

Let \overline{M} be an n–dimensional Lorentzian manifold with a tensor field ϕ of type $(1, 1)$, a vector field ξ and a 1- form η which satisfy

\[
\phi^2 X = X + \eta(X) \xi, \quad \eta(\xi) = -1,
\]

\[
g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y),
\]

\[
g(X, \xi) = \eta(X),
\]

\[
g(X, \phi Y) = g(\phi X, Y),
\]

for any vector fields X, Y tangents to \overline{M}, it is called Lorentzian almost para-contact manifold [8]. Also in a Lorentzian almost para-contact structure the following relations hold :

\[
\phi(\xi) = 0, \quad \eta(\phi X) = 0, \quad \text{rank } \phi = n - 1.
\]

A Lorentzian almost para-contact manifold \overline{M} is called Lorentzian para-Sasakian (LP–Sasakian) manifold if [10]

\[
(\nabla_X \phi) Y = g(X, Y) \xi + \eta(Y) X + 2\eta(X) \eta(Y) \xi.
\]

Definition 1. A m–dimensional Riemannian submanifold M of a Lorentzian para-Sasakian manifold \overline{M} is called a semi-invariant submanifold if ξ is tangent to M and it is endowed with a pair of orthogonal differentiable distributions (D, D^\perp), which satisfies (1) $TM = D \oplus D^\perp \oplus \xi$, where \oplus denotes the orthogonal direct sum, (2) the distribution $D_x : x \mapsto D \subset T_x M$ is invariant under ϕ i.e $\phi D_x \subset D_x$ for each $x \in M$ (3) the orthogonal complementary distribution $D^\perp : x \mapsto D^\perp \subset T_x M$ of the distribution D on M is totally real i.e $\phi D^\perp \subset T_x^\perp M$ where $T_x M$ and $T_x^\perp M$ are the tangent space and the normal space of M at x respectively.

Let the dimension of D (resp. D^\perp) be $2p$ (resp. q), where $2p + q = m - 1$. If $p = 0$ (resp. $q = 0$) the submanifold M becomes anti-invariant (resp. invariant)submanifold. A generic submanifold M satisfies $D^\perp = \dim T_x^\perp M$. A submanifold is called proper if it is neither invariant nor anti-invariant. It is easy to see that any hypersurface to which the vector field ξ is tangent is a typical example of semi-invariant submanifold. Where D and D^\perp are the horizontal and vertical distribution respectively. Let ∇ (resp. ∇) be the covariant differentiation with respect to Levi-Civita connection on \overline{M} (resp. M).
The Gauss and Weingarten formulas for M are respectively given by
\[\nabla_X Y = \nabla_X Y + \sigma (X, Y), \tag{6} \]
and
\[\nabla_X N = -A_N X + \nabla^\perp_X N, \tag{7} \]
for $X, Y \in TM, N \in T^\perp M$, where σ (resp. A) is the second fundamental form (resp. tensor) of M in \overline{M}, and ∇ denote the operator of the normal connection.

The projection of TM to D and D^\perp are denoted by h and v respectively i.e, for any $X \in TM$ we have
\[X = \sigma X + vX + \eta (X) \xi. \tag{9} \]
The normal bundle to M has the decomposition
\[T^\perp M = \phi D^\perp \oplus n_1, \tag{10} \]
where $g (\phi D^\perp, n_1) = 0$. For any $U \in T^\perp M$, we put
\[U = nU + mU, \tag{11} \]
where $nU \in \phi D^\perp, mU \in n_1$. From the above equation we have
\[\phi U = \phi nU + \phi mU, U \in T^\perp M, \phi nU \in D^\perp, \phi mU \in n_1. \tag{12} \]

Definition 2. Let M be a semi-invariant submanifold of a Lorentzian para-Sasakian manifolds \overline{M} and M' be an Lorentzian manifold with structure (ϕ', ξ', η', g'). Assume that there is a submersion $\pi : M \to M'$ such that (i) $D^\perp = \ker \pi_* : TM \to TM'$ is the tangent mapping to π, (ii) $\pi_* : D_p \oplus \{ \xi \} \to T_{\pi(p)}M'$ is an isometry for each $p \in M$ which satisfies $\pi_* \circ \phi = \phi' \circ \pi_*; \eta = \eta' \circ \pi_*; \pi_* (\xi_p) = \xi'_p$, where $T_{\pi(p)}M'$ denotes the tangent space of M' at $\pi(p)$.

A vector X on M is said to be basic if, $X \in D_p \oplus \xi$ and X is π–related to a vector field on M' i.e there exists a vector field $X_* \in TM'$ such that $\pi_* (X_p) = X_{*\pi(p)}$ for each $p \in M$. Note that, by condition (ii) of the above definition 2, we have that the structural vector field ξ is a basic vector field.

Lemma 3. Let X, Y be basic vector fields on M. Then
(i) $g(X, Y) = g' (X_*, Y_*) \circ \pi$,
(ii) the component $\sigma ([X, Y]) + \eta ([X, Y] \xi) = [X_*, Y_*]$,
(iii) $[U, X] \in D^\perp$ for any $U \in D^\perp$,
(iv) $\sigma (\nabla_X Y) + \eta (\nabla_X Y) \xi$, is a basic vector field corresponding to $\nabla^*_{X_*} Y_*$, where ∇^* denote the Levi-Civita connection on M'.

For basic vector fields on M, we define the operator $\tilde{\nabla}^*$ corresponding to ∇^* by setting $\tilde{\nabla}_X^*Y = \sigma([X,Y]) + \eta([X,Y] \xi)$ for $X,Y \in (D_p \oplus \{\xi\})$. By (iv) of Lemma 3, $\tilde{\nabla}_X^*Y$ is a basic vector field and we have

$$\pi_*(\tilde{\nabla}_X^*Y) = \nabla_{\pi_*X}^*Y_*$.$$

(13)

Define the tensor field C by

$$\nabla_XY = \tilde{\nabla}_X^*Y + C(X,Y),$$

(14)

$X,Y \in (D_p \oplus \{\xi\})$, where $C(X,Y)$ is the verticle part of ∇_XY. It is known that C is skew-symmetric and satisfies

$$C(X,Y) = \frac{1}{2}v[X,Y],$$

(15)

where $X,Y \in (D_p \oplus \{\xi\})$.

The curvature tensor R, R^* of the connection ∇, ∇^* on M and M' respectively are related by

$$R(X,Y,Z,W) = R^*(X_*,Y_*,Z_*,W_*) - g(C(Y,Z),C(X,W))$$

$$+ g(C(X,Z),C(Y,W)) + 2g(C(X,Y),C(Z,W))$$

(16)

for $X,Y,Z,W \in (D_p \oplus \{\xi\})$, where $\pi_*X = X_*, \pi_*Y = Y_*, \pi_*Z = Z_*$ and $\pi_*W = W_* \in \chi M'$. For Lorentzian para-Sasakian manifold \overline{M} we prove

Proposition 4. Let $\pi : M \to M'$ be a submersion of semi-invariant submanifold of a Lorentzian para-Sasakian manifold \overline{M} onto a Lorentzian manifold M'. Then we have

$$\left(\tilde{\nabla}_X^*\phi\right)Y = g(X,Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi,$$

(17)

$$C(X,\phi Y) = \phi n\sigma(X,Y),$$

(18)

$$\phi C(X,Y) = n\sigma(X,\phi Y),$$

(19)

$$\phi m\sigma(X,Y) = m\sigma(X,\phi Y),$$

(20)

for any $X,Y \in (D_p \oplus \{\xi\})$.

Proof. For any $X,Y \in (D \oplus \{\xi\})$ and by using Gauss formula (6), decomposition equation (11) and (14), we obtain

$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X,Y) = \nabla_X Y + n\sigma(X,Y) + m\sigma(X,Y)$$
\[
\tilde{\nabla}_X^* Y + C(X, Y) + n\sigma(X, Y) + m\sigma(X, Y). \tag{21}
\]

And
\[
\phi\tilde{\nabla}_X Y = \phi\tilde{\nabla}_X^* Y + \phi C(X, Y) + \phi n\sigma(X, Y) + \phi m\sigma(X, Y). \tag{22}
\]

Putting \(Y = \phi Y\) in equation (21), we get
\[
\tilde{\nabla}_X \phi Y = \tilde{\nabla}_X^* \phi Y + C(X, \phi Y) + n\sigma(X, \phi Y) + m\sigma(X, \phi Y). \tag{23}
\]

Using the definition of Lorentzian para-Sasakian manifold, we find
\[
\left(\tilde{\nabla}_X^* \phi\right) Y = \tilde{\nabla}_X \phi Y - \phi \tilde{\nabla}_X Y = g(X, Y) \xi + \eta(Y) X + 2\eta(X) \eta(Y) \xi. \tag{24}
\]

Substituting (22) and (23) in (24), we get
\[
\tilde{\nabla}_X^* \phi Y + C(X, \phi Y) + n\sigma(X, \phi Y) + m\sigma(X, \phi Y) - \phi \tilde{\nabla}_X^* Y - \phi C(X, Y) - \phi n\sigma(X, Y) - \phi m\sigma(X, Y)
= g(X, Y) \xi + \eta(Y) X + 2\eta(X) \eta(Y) \xi. \tag{25}
\]

Comparing the components of \((D \oplus \{\xi\}), D^⊥, \phi D^⊥\) and \(n_1\) respectively on both sides in the above equation, we get the required results.

Proposition 5. Let \(\pi : M \to M'\) be a submersion of semi-invariant submanifold of a Lorentzian para-Sasakian manifold \(\overline{M}\) onto a Lorentzian manifold \(M'\). Then \(M'\) is also a Lorentzian para-Sasakian manifold.

Proof. From equation (17) of proposition (4), we have
\[
\left(\tilde{\nabla}_X^* \phi\right) Y = g(X, Y) \xi + \eta(Y) X + 2\eta(X) \eta(Y) \xi. \tag{26}
\]

Applying \(\pi_*\) to the above equation and using Lemma 3, equation (13) and definition of submersion, we derive
\[
\left(\tilde{\nabla}_{X_*}^* \phi'\right) Y_* = g'(X_*, Y_*) \xi' + \eta'(Y_*) X' + 2\eta'(X_*) \eta'(Y_*) \xi'. \tag{27}
\]

Hence \(M'\) is a Lorentzian para-Sasakian manifold.

Proposition 6. Let \(\pi : M \to M'\) be a submersion of semi-invariant submanifold of a Lorentzian para-Sasakian manifold \(\overline{M}\) onto a Lorentzian manifold \(M'\). Then

\(i\) \(n\sigma(X, \phi Y) + n\sigma(\phi X, Y) = 0, \)

\(ii\) \(n\sigma(\phi X, \phi Y) = -n\sigma(Y, X), \)

\(iii\) \(m\sigma(\phi X, \phi Y) = m\sigma(X, Y), \)

\(iv\) \(C(\phi X, \phi Y) = -C(X, Y), \)

for any \(X, Y \in (D \oplus \{\xi\}).\)
Proof. (i) Interchanging X and Y in equation (19) gives

$$\phi C (Y, X) = n\sigma (Y, \phi X) = n\sigma (\phi X, Y),$$

(28)

Then

$$n\sigma (X, \phi Y) + n\sigma (\phi X, Y) = \phi C (X, Y) + \phi C (Y, X) = \phi C (X, Y) - \phi C (X, Y) = 0.$$

(ii) Putting $X = \phi X$ in (19), we get

$$n\sigma (\phi X, \phi Y) = \phi C (\phi X, Y) = -\phi C (Y, \phi X).$$

(29)

Using (18) in (29), we deduce

$$n\sigma (\phi X, \phi Y) = -\phi C (Y, \phi X) = -\phi (\phi n\sigma (Y, X)) = -\phi^2 n\sigma (Y, X)$$

$$= -n\sigma (Y, X) - \eta (\sigma (X, Y)) \xi = -n\sigma (Y, X).$$

(iii) Putting $X = \phi X$ in (20) and using again the same equation, we find

$$m\sigma (\phi X, \phi Y) = \phi m\sigma (\phi X, Y) = \phi m\sigma (Y, \phi X) = \phi^2 m\sigma (Y, X) = m\sigma (X, Y).$$

(iv) Putting $X = \phi X$ in (18) and then using (19) yields

$$C (\phi X, \phi Y) = \phi n\sigma (\phi X, Y) = \phi n\sigma (Y, \phi X) = \phi^2 C (Y, X)$$

$$= C (Y, X) + \eta (C (Y, X)) \xi = -C (X, Y).$$

\[\square \]

3. Curvature Relation

Proposition 7. Let $\pi : M \to M'$ be a submersion of semi-invariant submanifold of a Lorentzian para-Sasakian manifold \overline{M} onto a Lorentzian manifold M'. Then the ϕ–sectional curvature of \overline{M} and M' are related by

$$\overline{B} (X, Y) = B' (X, Y) - 2g (n\sigma (X, X), n\sigma (Y, Y)).$$

where $X, Y \in (D \oplus \{\xi\})$.

Proof. We know

$$\overline{B} (X, Y) = \overline{R} (X, \phi X, \phi Y, Y).$$

Putting $Y = \phi X, Z = \phi Y, W = Y$ in Gauss equation

$$\overline{R} (X, Y, Z, W) = R (X, Y, Z, W) - g (\sigma (X, W), \sigma (Y, Z))$$
we get

\[g((X, Z), \sigma(Y, W)) + g((X, \sigma(Y)), \sigma(\phi(X, Y))) \]
Applying ϕ on both side of equation (19), we obtain
\[C(X, Y) = \phi n\sigma(X, \phi Y). \] (32)

Using equation (32) in equation (31) give
\[
R(X, \phi X, \phi Y, Y) = R^*(X_*, \phi' X_*, \phi' Y_*, Y_*) - \|n\sigma(X, Y)\|^2 + \|n\sigma(X, \phi Y)\|^2
- 2g(n\sigma(X, X), n\sigma(Y, Y)).
\]

Putting the value of $R(X, \phi X, \phi Y, Y)$ in (30), we obtain
\[
R(X, \phi X, \phi Y, Y) = R^*(X_*, \phi' X_*, \phi' Y_*, Y_*) - 2g(n\sigma(X, X), n\sigma(Y, Y))
\]
or
\[
\overline{B}(X, Y) = B'(X_*, Y_*) - 2g(n\sigma(X, X), n\sigma(Y, Y)). \tag{33}
\]

Proposition 8. Let $\pi : M \to M'$ be a submersion of semi-invariant submanifold of a Lorentzian para- Sasakian manifold \overline{M} onto a Lorentzian manifold M'. Then the ϕ–sectional curvature of \overline{M} and M' are related by
\[
\overline{H}(X) = H'(X_*) - 2\|n\sigma(X, X)\|^2,
\]
where $X, Y \in (D \oplus \{\xi\})$.

Proof. Putting $X = Y$ in equation (33) we obtain
\[
\overline{B}(X, X) = \overline{H}(X) = H'(X_*) - 2g(n\sigma(X, X), n\sigma(X, X))
= H'(X_*) - 2\|n\sigma(X, X)\|^2.
\]

Thus we get
\[
\overline{H}(X) = H'(X_*) - 2\|n\sigma(X, X)\|^2. \tag*{\Box}
\]

Application: Lorentzian para-Sasakian manifolds are used in the theory of Relativity and Newton’s law of gravitational field.
Acknowledgements

The first author is thankful to University Grants Commission, New Delhi, India for financial support in the form of UGC – Dr. D. S. Kothari Post Doctoral Fellowship.

References

