IJPAM: Volume 120, No. 4 (2018)

Title

$G$-CONE METRIC SPACES AND FIXED POINTS
THROUGH MULTIVALUED CONTRACTIONS

Authors

Anju Panwar$^1$, Anita$^2$
Department of Mathematics
Maharshi Dayanand University
Rohtak (Haryana), 124001, INDIA

Abstract

The aim of the paper is to obtain a fixed point result for multivalued contraction by using a newly define notion $H$-cone metric with respect to $G$ for the family $\A$ of subsets of $X$ in complete $G$-cone metric space. Our result generalizes $H$-cone metric in the sense of Muhammad Arshad and Jamshaid Ahmad [1] to $G$-metric spaces. Moreover, an example is provided to illustrate the usability of main result.

History

Received: August 12, 2017
Revised: October 10, 2017
Published: December 17, 2019

AMS Classification, Key Words

AMS Subject Classification: 47H10, 54H25
Key Words and Phrases: $G$-cone metric space, H-cone metric,
Non-normal cone, Multivalued mapping, Fixed point

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. Arshad and J. Ahamd, On multivalued contractions in cone metric spaces without normality, The Scientific World Journal, 2013 (2013), 1-3.

2
I. Beg, M. Abbas and T. Nazir, Generalized cone metric spaces, Journal of Nonlinear Sci. Appl., 3 (1) (2010), 21-31.

3
C.M. Chen, On set-valued contractions of Nadler type in tvs $G$-cone metric spaces, Fixed Point Theory and Appl., 2012 (2012), 1-8.

4
B.C. Dhage, Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1992), 329-336.

5
L.G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, Journal of Mathematical Analysis and Applications, 332 (2007), 1468-1476.

6
S. Jankovic, Z. Kadelburg and S. Radenovic, On cone metric spaces: a survey, Nonlinear Analysis Theory Methods and Applications, 74 (2011), 2591-2601.

7
D. Klim and D. Wardowski, Dynamic processes and fixed points of set valued nonlinear contractions in cone metric spaces, Nonlinear Analysis Theory Methods and Applications, 71 (11) (2009), 5170-5175.

8
A. Kaewcharoen and A. Kaewkhao, Common fixed points for single valued and multivalued mappings in G-metric spaces, Int. J. Math. Anal., 5 (36) (2011), 1775-1790.

9
A. Latif and F.Y. Shaddad, Fixed point results for multivalued maps in cone metric spaces, Fixed Point Theory and Applications, 2010 (2010), 1-11.

10
Z. Mustafa and B. Sim, A new approach to generalized metric spaces, Journal of Nonlinear Convex Anal., 7 (2) (2006), 289-297.

11
Z. Mustafa and B. Sim, Fixed point theorems for contractive mappings in complete G-metric spaces, Fixed Point Theory and Appl., 10 (2009), 1-10.

12
S.B. Nadler, Jr., Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.

13
T. Nedal, A. Hassen, E. Karapinar and W. Shatanawi, Common fixed points for single valued and multivalued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory and Appl., 2012 (2012), 1-9.

14
A. Panwar and Anita, Mulivalued Contractions without Normality in Cone b-Metric Spaces, International Journal of Pure and Applied Mathematics, 107 (3) (2016), 589-595.

15
S. Rezapour and R. Hamlbarani, Some notes on the paper “cone metric spaces and fixed point theorems of contractive mappings”, J. Math. Anal. Appl., 345 (2008), 719-724.

16
D. Wardowski, On set-valued contractions of Nadler type in cone metric spaces, Applied Mathematics Letters, 24 (3) (2011), 275-278.

17
D. Wardowski, Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear Analysis Theory Methods and Applications, 71 (2) (2009), 512-516.

How to Cite?

DOI: 10.12732/ijpam.v120i4.14 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 4
Pages: 657 - 667


$G$-CONE METRIC SPACES AND FIXED POINTS THROUGH MULTIVALUED CONTRACTIONS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).