IJPAM: Volume 97, No. 3 (2014)

EXISTENCE OF WEAK POSITIVE SOLUTION FOR
CLASS OF $\left(p_{1},p_{2,...,}p_{n}\right) $-LAPLACIAN
ELLIPTIC SYSTEM WITH DIFFERENT WEIGHTS

Rafik Guefaifia$^1$, Kamel Akrout$^2$, Tahar Bouali$^3$
$^{1,2,3}$Department of Mathematics
University Badji Mokhtar
Annaba, 23000, ALGERIA


Abstract. Consider the system \begin{equation*}
\left\{
\begin{array}{c}
-\Delta _{P_{1},p_{1}}u_{1}=\lamb...
... on }\partial \Omega ,\quad i=1,2,...n,%
\end{array}%
\right.
\end{equation*} where $ \Delta _{R_{i},r_{i}} $ with $ r_{i}>1 $ and $ R_{i}=R_{i}\left( x\right)
$ is a weights functions, denotes the weighted $ r_{i} $ -Laplacian defined by $ %
\Delta _{R_{i},r_{i}}u_{i}=\text{\rm div}\left( R_{i}\left( x\right) \left\vert
\nabla u_{i}\right\vert ^{r_{i}-2}\nabla u_{i}\right) ,i=1,2,...n,\lambda $ is a positive parameter, $ a_{i}\left( x\right) $ , $ i=1,2,...n, $ are a weights functions,and $ \Omega $ is a bounded domain in $ \mathbb{R}^{N} $ $ \left(
N>1\right) $ with smooth boundary $ \partial \Omega . $ We prove the existence of a large positive solutions for $ \lambda $ large, we use the method of sub-supersolutions to establish our results.

Received: May 23, 2014

AMS Subject Classification: 05C38, 15A15, 05A15, 15A18

Key Words and Phrases: positive solutions, sub-supersolutions, p-Laplacian systems

Download paper from here.




DOI: 10.12732/ijpam.v97i3.4 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2014
Volume: 97
Issue: 3
Pages: 303 - 310


$\left(p_{1},p_{2,...,}p_{n}\right) $-LAPLACIAN ELLIPTIC SYSTEM WITH DIFFERENT WEIGHTS%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; zbMATH; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).