IJPAM: Volume 113, No. 3 (2017)

Title

STABILITY OF AN ADDITIVE-QUARTIC
FUNCTIONAL EQUATION IN ORTHOGONALITY SPACES

Authors

S. Sekar$^1$, G. Mayelvaganan$^2$
$^{1}$Department of Mathematics
Government Arts College(Autonomous
Salem-636 007, Tamil Nadu, INDIA
$^{2}$Department of Mathematics
M.G.R College
Hosur-635 109, Tamil Nadu, INDIA

Abstract

Using the fixed point method, we prove the Hyers-Ulam stability of the following additive-quartic functional equation
\begin{align}
f(x+2y)+f(x-2y)=f(2x+y)+f(2x-y)-f(2x)-7[f(x)+f(-x)]\n \\ +15[f(y)+f(-y)] , \quad \forall x, y \text{~~with~~} x\bot y,
\end{align}
in orthogonality spaces. Here $\bot$ is the orthogonality in the sense of R$\ddot{a}$tz.

History

Received: December 19, 2016
Revised: January 23, 2017
Published: March 28, 2017

AMS Classification, Key Words

AMS Subject Classification: 39B55, 47H10, 39B52, 46H25.
Key Words and Phrases: Hyers-Ulam stability; orthogonally additive-quaric functional equation;
orthogonality space; fixed point method.

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
T. Aoki, On the stability of the lineartransformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.

2
L. Cadariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math. 4,no. 1, Art. ID 4 (2003).

3
L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.

4
L. Cadariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory Appl. 2008, Art. ID 749392 (2008).

5
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, London, Singapore and Hong Kong, (2002).

6
J. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968) 305-309.

7
F. Drljevic, On a functional which is quadratic on A-orthogonal vectors, Publ. Inst. Math. (Beograd) 54 (1986), 63-71.

8
M. Eshaghi Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory 12 (2011), 71-82.

9
M. Eshaghi Gordji, H. Khodaei, Th.M. Rassias, R. Khodabakhsh,
$J^*$-homomorphisms and $J^*$-derivations on $J^*$-algebras for a generalized Jensen type functional equation,
Fixed Point Theory 13 (2012), 481-494.

10
M. Eshaghi Gordji, C. Park, M.B. Savadkouhi, The stability of a quartic type functional equation with the fixed point alternative, Fixed Point Theory 11 (2010) 265-272.

11
M. Fochi, Functional equations in $A$-orthogonal vectors, Aequationes Math. 38 (1989) 28-40.

12
R. Ger and J. Sikorska, Stability of the orthogonal additivity, Bull. Polish Acad. Sci. Math. 43 (1995) 143-151.

13
S. Gudder and D. Strawther, Orthogonally additive and orthogonally increasing functions on vector spaces, Pacific J. Math., 58 (1995), 427-436.

14
D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941) 222-224.

15
G. Isac and Th.M. Rassias, Stability of $\psi$-additive mappings: Appications to nonlinear analysis, Internat. J. Math. Math.Sci., 19 (1996) 219-228.

16
K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2002) 867-878.

17
S. Jung, On the quadratic functional equation modulo a subgroup, Indian J. Pure Appl. Math., 36 (2005) 441-450.

18
Y. Jung and I. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl., 306 (2005) 752-760.

19
S. Lee, S. Im and I. Hwang, Quartic functional equations, J. Math. Anal. Appl., 307 (2005) 387-394.

20
D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008) 567-572.

21
M. Mirzavaziri and M.S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc., 37 (2006) 361-376.

22
M.S. Moslehian, On the orthogonal stability of the Pexiderized quadratic equation, J. Difference Equat. Appl., 11 (2005) 999-1004.

23
M.S. Moslehian, On the stability of the orthogonal Pexiderized Cauchy equation, J. Math. Anal. Appl., 318 (2006) 211-223.

24
C. Park,
Functional equations in Banach modules, Indian J. Pure Appl. Math., 33 (2002) 1077-1086.

25
C. Park, Multilinear mappings in Banach modules over a $C^*$-algebra, Indian J. Pure Appl. Math., 35 (2004) 183-192.

26
C. Park, Fixed points and Hyers-Ulam-Rassias stability of Cauchy-Jensen functional equations in Banach algebras, Fixed Point Theory Appl., 2007, Art. ID 50175 (2007).

27
C. Park, Generalized Hyers-Ulam-Rassias stability of quadratic functional equations: a fixed point approach, Fixed Point Theory Appl., 2008, Art. ID 493751 (2008).

28
C. Park, A fixed point approach to the stability of additive functional inequalities in $RN$-spaces, Fixed Point Theory, 11 (2011) 429-442.

29
C. Park, H.A. Kenary, S. Kim, Positive-additive functional equations in $C^*$-algebras, Fixed Point Theory 13 (2012) 613-622.

30
C. Park and J. Park, Generalized Hyers-Ulam stability of an Euler-Lagrange type additive mapping, J. Difference Equat. Appl., 12 (2006) 1277-1288.

31
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4 (2003) 91-96.

32
A. Rahimi, A. Najati, A strong quadratic functional equation in $C^*$-algebras, Fixed Point Theory, 11 (2010) 361-368.

33
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297-300.

34
Th.M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000) 264-284.

35
J. R$\ddot{a}$tz, On orthogonally additive mappings, Aequationes Math., 28 (1985) 35-49.

36
Gy. Szabó, Sesquilinear-orthogonally quadratic mappings, Aequationes Math., 40 (1990) 190-200.

37
S.M. Ulam, Problems in Modern Mathematics, Rend. Chap.VI,Wiley, New York (1960).

38
F. Vajzovic, Über das Funktional H mit der Eigenschaft: $(x,y) = 0 \Rightarrow H(x + y) + H(x - y) = 2H(x) + 2H(y)$, Glasnik Mat. Ser., III 2 (22) (1967) 73-81.

How to Cite?

DOI: 10.12732/ijpam.v113i3.9 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2017
Volume: 113
Issue: 3
Pages: 471 - 482


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).