IJPAM: Volume 118, No. 1 (2018)

Title

ROUGH CONVERGENCE OF BERNSTEIN FUZZY
$I-$ CONVERGENT OF $\Gamma^{3I\left(F\right)}_{f\left(\Delta,p\right)}$ SPACE DEFINED
BY ORLICZ FUNCTION

Authors

C. Murugesan$^1$, N. Subramanian$^2$
$^1$Department of Mathematics
Misrimal Navajee Munoth Jain Engineering College
Chennai, 600 097, INDIA
$^2$Department of Mathematics
SASTRA University
Thanjavur, 613 401, INDIA

Abstract

The aim of this paper is to introduce and study a new concept of the rough fuzzy ideal convergent triple entire sequences defined by Orlicz function and also some topological properties of the resulting sequence spaces of rough fuzzy numbers were examined.

History

Received: 2017-11-10
Revised: 2018-02-10
Published: February 18, 2018

AMS Classification, Key Words

AMS Subject Classification: 40F05, 40J05, 40G05
Key Words and Phrases: triple entire sequences, rough convergence, fuzzy numbers, Orlicz function, difference sequence,duals, integral sequence

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
S. Aytar, Rough statistical convergence, Numer. Funct. Anal. Optimiz, 29, No-s: 3-4 (2008), 291-303.

1
S. Aytar, The rough limit set and the core of a real sequence, Numer. Funct. Anal. Optimiz, 29, No-s: 3-4 (2008), 283-290.

2
A. Esi, On some triple almost lacunary sequence spaces defined by Orlicz functions, Research and Reviews: Discrete Mathematical Structures, 1, No. 2 (2014), 16-25.

2
A. Esi and M. Necdet Catalbas,Almost convergence of triple sequences, Global Journal of Mathematical Analysis, 2, No. 1 (2014), 6-10.

2
A. Esi and E. Savas, On lacunary statistically convergent triple sequences in probabilistic normed space,Appl. Math. and Inf. Sci., 9, No. 5 (2015), 2529-2534.

2
A. Esi, S. Araci and M. Acikgoz, Statistical convergence of Bernstein operators, Appl. Math. and Inf. Sci., 10, No. 6 (2016), 2083-2086.

3
A. J. Datta A. Esi and B.C. Tripathy, Statistically convergent triple sequence spaces defined by Orlicz function, Journal of Mathematical Analysis, 4, No. 2 (2013), 16-22.

4
S. Debnath, B. Sarma and B.C. Das , Some generalized triple sequence spaces of real numbers, Journal of Nonlinear Analysis and Optimization, 6, No. 1 (2015), 71-79.

5
E. D$\ddot{u}$ndar, C. Cakan, Rough $I-$ convergence, Demonstratio Mathematica, Accepted.

6
H.X. Phu, Rough convergence in normed linear spaces, Numer. Funct. Anal. Optimiz., 22 (2001), 199-222.

6
H.X. Phu, Rough continuity of linear operators, Numer. Funct. Anal. Optimiz, 23 (2002), 139-146.

6
H.X. Phu, Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. Optimiz, 24 (2003), 285-301.

7
A. Sahiner, M. Gurdal and F.K. Duden, Triple sequences and their statistical convergence, Selcuk J. Appl. Math., 8, No. 2 (2007), 49-55.

7
A. Sahiner, B.C. Tripathy, Some $I$ related properties of triple sequences, Selcuk J. Appl. Math., 9, No. 2 (2008), 9-18.

8
N. Subramanian and A. Esi, The generalized tripled difference of $\chi^{3}$ sequence spaces, Global Journal of Mathematical Analysis, 3, No. 2 (2015), 54-60.

9
P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Lecture Notes, Pure and Applied Mathematics, New York, 1981.

10
J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.

11
J. Musielak, Orlicz Spaces, Lectures Notes in Math., 1034, Springer-Verlag, 1983.

How to Cite?

DOI: 10.12732/ijpam.v118i1.13 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 118
Issue: 1
Pages: 137 - 148


$I-$ CONVERGENT OF $\Gamma^{3I\left(F\right)}_{f\left(\Delta,p\right)}$ SPACE DEFINED BY ORLICZ FUNCTION%22&as_occt=any&as_epq=&as_oq=&as_eq=&as_publication=&as_ylo=&as_yhi=&as_sdtAAP=1&as_sdtp=1" title="Click to search Google Scholar for this entry" rel="nofollow">Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).