IJPAM: Volume 120, No. 3 (2018)

Title

STRONGLY CONNECTED COMPONENTS OF
A NETWORK IN PRETOPOLOGY

Authors

Monique Dalud-Vincent
MEPS - Max Weber Center
UFR ASSP - University Lyon 2
5 Avenue Pierre Mendès-France
69676 Bron cedex, FRANCE

Abstract

In this paper, we present properties of strongly connected components in the case of a network (which is defined as a family of pretopologies). The network can be analyse by the union or by the intersection or by the composition of the different pretopologies.

History

Received: October 4, 2017
Revised: May 2, 2018
Published: October 17, 2018

AMS Classification, Key Words

AMS Subject Classification: 54A05, 54B05, 54B15
Key Words and Phrases: pretopology, strongly connected component, network

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
Z. Belmandt, Manuel de prétopologie et ses applications, Hermès, France (1993).

2
M. Dalud-Vincent, Modèle prétopologique pour une méthodologie d'analyse de réseaux. Concepts et algorithmes, Ph.D. Thesis, Lyon 1 University, France (1994).

3
M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology as an extension of graph theory : the case of strong connectivity, International Journal of Applied Mathematics, 5, No. 4 (2001), 455-472.

4
M. Dalud-Vincent, M. Brissaud, M. Lamure, Closed sets and closures in pretopology, International Journal of Pure and Applied Mathematics, 50, No. 3 (2009), 391-402.

5
M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology, Matroıdes and Hypergraphs, International Journal of Pure and Applied Mathematics, 67, No. 4 (2011), 363-375.

6
M. Dalud-Vincent, M. Brissaud, M. Lamure, Connectivities and Partitions in a Pretopological Space, International Mathematical Forum, 6, No. 45 (2011), 2201-2215.

7
M. Dalud-Vincent, M. Lamure, Connectivities for a Pretopology and its inverse, International Journal of Pure and Applied Mathematics, 86, No. 1 (2013), 43-54, doi: 10.12732/ijpam.v86i1.5.

8
M. Dalud-Vincent, M. Lamure, Connectivities in the case of an idempotent Pretopology, International Journal of Pure and Applied Mathematics, 106, No. 3 (2016), 923-936, doi : 10.12732/ijpam.v106i3.17.

9
M. Dalud-Vincent, M. Lamure, Connectivities for a symmetric Pretopology, International Journal of Pure and Applied Mathematics, 111, No. 1 (2016), 77-90, doi : 10.12732/ijpam.v111i1.8.

How to Cite?

DOI: 10.12732/ijpam.v120i3.1 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 3
Pages: 291 - 301


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).