IJPAM: Volume 120, No. 3 (2018)
Title
STRONGLY CONNECTED COMPONENTS OFA NETWORK IN PRETOPOLOGY
Authors
Monique Dalud-VincentMEPS - Max Weber Center
UFR ASSP - University Lyon 2
5 Avenue Pierre Mendès-France
69676 Bron cedex, FRANCE
Abstract
In this paper, we present properties of strongly connected components in the case of a network (which is defined as a family of pretopologies). The network can be analyse by the union or by the intersection or by the composition of the different pretopologies.History
Received: October 4, 2017
Revised: May 2, 2018
Published: October 17, 2018
AMS Classification, Key Words
AMS Subject Classification: 54A05, 54B05, 54B15
Key Words and Phrases: pretopology, strongly connected component, network
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- Z. Belmandt, Manuel de prétopologie et ses applications, Hermès, France (1993).
- 2
- M. Dalud-Vincent, Modèle prétopologique pour une méthodologie d'analyse de réseaux. Concepts et algorithmes, Ph.D. Thesis, Lyon 1 University, France (1994).
- 3
- M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology as an extension of graph theory : the case of strong connectivity, International Journal of Applied Mathematics, 5, No. 4 (2001), 455-472.
- 4
- M. Dalud-Vincent, M. Brissaud, M. Lamure, Closed sets and closures in pretopology, International Journal of Pure and Applied Mathematics, 50, No. 3 (2009), 391-402.
- 5
- M. Dalud-Vincent, M. Brissaud, M. Lamure, Pretopology, Matroıdes and Hypergraphs, International Journal of Pure and Applied Mathematics, 67, No. 4 (2011), 363-375.
- 6
- M. Dalud-Vincent, M. Brissaud, M. Lamure, Connectivities and Partitions in a Pretopological Space, International Mathematical Forum, 6, No. 45 (2011), 2201-2215.
- 7
- M. Dalud-Vincent, M. Lamure, Connectivities for a Pretopology and its inverse, International Journal of Pure and Applied Mathematics, 86, No. 1 (2013), 43-54, doi: 10.12732/ijpam.v86i1.5.
- 8
- M. Dalud-Vincent, M. Lamure, Connectivities in the case of an idempotent Pretopology, International Journal of Pure and Applied Mathematics, 106, No. 3 (2016), 923-936, doi : 10.12732/ijpam.v106i3.17.
- 9
- M. Dalud-Vincent, M. Lamure, Connectivities for a symmetric Pretopology, International Journal of Pure and Applied Mathematics, 111, No. 1 (2016), 77-90, doi : 10.12732/ijpam.v111i1.8.
How to Cite?
DOI: 10.12732/ijpam.v120i3.1 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 3
Pages: 291 - 301
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).