IJPAM: Volume 120, No. 3 (2018)

Title

SOME COMMENTS ON THE WEIBULL-R FAMILY WITH
BASELINE PARETO AND LOMAX CUMULATIVE SIGMOIDS

Authors

Nikolay Kyurkchiev$^1$, Anton Iliev$^2$, Asen Rahnev$^3$
$^{1,2,3}$Faculty of Mathematics and Informatics
University of Plovdiv Paisii Hilendarski
24 Tzar Asen Str., 4000 Plovdiv, BULGARIA

Abstract

In this paper we study the one-sided Hausdorff approximation of the shifted Heaviside step function by some classes of Weibull-R Family with baseline Pareto and Lomax cumulative sigmoids. The estimates of the value of the best Hausdorff approximation obtained in this article can be used in practice as one possible additional criterion in ”saturation” study.

Numerical examples, illustrating our results are presented using programming environment CAS Mathematica.

History

Received: April 2, 2018
Revised: December 11, 2018
Published: January 14, 2019

AMS Classification, Key Words

AMS Subject Classification: 68N30, 41A46
Key Words and Phrases: Weibull-G family of cumulative distribution, Weibull-R family with baseline Pareto (cdf), Weibull-R family with baseline Lomax (cdf), Heaviside function, Hausdorff approximation, upper and lower bounds

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continues distribution, Metron, 71 (2013), 63-79.

2
A. Alzaatreh, F. Famoye, C. Lee, Weibull-Pareto distribution and its applications, Commun. in Stat. Theory and Methods, 42 (2013), 1673-1691.

3
A. Alzaatreh, I. Ghosh, On the Weibull-X family of distributions, J. Stat. Theory Appl., 14 (2015), 169-183.

4
A. Alzaghal, I. Ghosh, A. Alzaatreh, On shifted Weibull-Pareto distribution, Int. J. Stat. Probab., 5 (2016), 139-149.

5
I. Ghosh, S. Nadarajah, On some further properties and applications of Weibull-R family of distributions, Ann. Data. Sci., (2018), 13 pp.

6
S. Nadarajah, S. Kotz, On some recent modifications of Weibull distribution, IEEE Trans. Reliab., 54 (2005), 561-562.

7
M. Tahir, G. Cordeiro, A. Alzaatreh, M. Mansoor, M. Zubair, A new Weibull-Pareto distribution: properties and applications, Commun. in Stat. Simulation and Computation, (2014), 22 pp.

8
M. Tahir, G. Cordeiro, M. Mansoor, M. Zubair, The Weibull-Lomax distribution: properties and applications, Hacet. J. Math. Stat., 44 (2015), 461-480.

9
E. Ortega, G. Cordeiro, M. Kattan, The log-beta Weibull regression model with application to predict recurrence of prostate cancer, Stat. Pap., 54 (2013), 113-143.

10
F. Hausdorff, Set Theory (2 ed.) (Chelsea Publ., New York, (1962 [1957]) (Republished by AMS-Chelsea 2005), ISBN: 978-0-821-83835-8.

11
Z. Ahmad, The Zubair-$G$ Family of Distributions: Properties and Applications, Annals of Data Science, (2018), doi: 10.1007/s40745-018-0169-9.

12
N. Kyurkchiev, A. Iliev, A. Rahnev, Comments on a Zubair-G Family of Cumulative Lifetime Distributions. Some Extensions, Communications in Applied Analysis, 23, (1), (2019), 1-20.

13
N. Kyurkchiev, S. Markov, On the Hausdorff distance between the Heaviside step function and Verhulst logistic function, J. Math. Chem., 54, No. 1 (2016), 109-119.

14
R. Anguelov, S. Markov, Hausdorff Continuous Interval Functions and Approximations, In: SCAN 2014 Proceedings, LNCS, ed. by J.W.von Gudenberg, Springer, Berlin, (2015).

15
R. Anguelov, S. Markov, B. Sendov, On the Normed Linear Space of Hausdorff Continuous Functions. In: Lirkov, I., et al. (Eds.): Lecture Notes in Computer Science, 3743, Springer, (2006), 281-288.

16
R. Anguelov, S. Markov, B. Sendov, Algebraic Operations on the Space of Hausdorff Continuous Functions. In: Bojanov, B. (Ed.): Constructive Theory of Functions, Prof. M. Drinov Academic Publ. House, Sofia, (2006), 35-44.

17
R. Anguelov, S. Markov, B. Sendov, The Set of Hausdorff Continuous Functions - the Largest Linear Space of Interval Functions, Reliable Computing, 12 (2006), 337-363.

18
A. Iliev, N. Kyurkchiev, S. Markov, On the Approximation of the step function by some sigmoid functions, Mathematics and Computers in Simulation, 133 (2017), 223-234.

19
S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note on the Three-stage Growth Model, Dynamic Systems and Applications, 28, No. 1 (2019), 63-72.

20
S. Markov, A. Iliev, A. Rahnev, N. Kyurkchiev, A Note On the $n$-stage Growth Model. Overview, Biomath Communications, 5, No. 2 (2018).

21
N. Kyurkchiev, S. Markov, Sigmoid functions: Some Approximation and Modelling Aspects, LAP LAMBERT Academic Publishing, Saarbrucken (2015), ISBN 978-3-659-76045-7.

22
R. Anguelov, N. Kyurkchiev, S. Markov, Some properties of the Blumberg's hyper-log-logistic curve, BIOMATH, 7, No. 1 (2018), 8 pp.

23
N. Kyurkchiev, A. Iliev, Extension of Gompertz-type Equation in Modern Science: 240 Anniversary of the birth of B. Gompertz, LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-90569-0.

24
N. Kyurkchiev, A. Iliev, S. Markov, Some Techniques for Recurrence Generating of Activation Functions: Some Modeling and Approximation Aspects, LAP LAMBERT Academic Publishing, (2017), ISBN: 978-3-330-33143-3.

25
N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Some software reliability models: Approximation and modeling aspects, LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-82805-0.

26
V. Kyurkchiev, A. Malinova, O. Rahneva, P. Kyurkchiev, Some Notes on the Extended Burr XII Software Reliability Model, Int. J. of Pure and Appl. Math., 120, No. 1 (2018), 127-136.

27
N. Pavlov, A. Iliev, A. Rahnev, N. Kyurkchiev, Nontrivial Models in Debugging Theory (Part 2), LAP LAMBERT Academic Publishing, (2018), ISBN: 978-613-9-87794-2.

How to Cite?

DOI: 10.12732/ijpam.v120i3.14 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 3
Pages: 461 -


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).