IJPAM: Volume 120, No. 3 (2018)

Title

EDGE TRIMAGIC GRACEFUL LABELING OF GRAPHS

Authors

M. Regees$^1$, J.A. Jose Ezhil$^2$, T. Shyla Isac Mary$^3$
$^1$Department of Mathematics
Malankara Catholic College
Mariagiri, Kaliakavilai - 629153, Tamilnadu, INDIA
$^2$Department of Mathematics
Nesamony Memorial Christian College
Marthandam-629165,Tamilnadu, INDIA
$^3$Department of Mathematics
Nesamony Memorial Christian College
Marthandam-629165,Tamilnadu, INDIA

Abstract

A $(p,q)$ graph G is called edge trimagic total if there exists a bijection $f : V(G) \cup E(G) \to \lbrace 1, 2, 3,..., p+q \rbrace$ such that for each edge $xy$ in $E(G)$ the value of $f(x)+f(xy)+f(y)$ = $K_{1}$ or $K_{2}$ or $K_{3}$. $G$ is called edge trimagic graceful if there exists a bijection $f : V(G) \cup E(G) \to \lbrace 1, 2, 3,..., p+q \rbrace$ such that for each edge $xy$ in $E(G)$, $\vert f(x) - f(xy) + f(y) \vert$ = $c_{1}$ or $c_{2}$ or $c_{3}$, where $c_{1}$, $c_{2}$, and $c_{3}$ are constants. In this paper, we introduce edge trimagic graceful labeling of some graphs and proved that the square graph $P_n^2$, $(P_{n};S_{1})$ and the comp $P_{n} \odot K_{1}$ are edge trimagic graceful graphs.

History

Received: October 25, 2017
Revised: January 13, 2018
Published: January 14, 2019

AMS Classification, Key Words

AMS Subject Classification: 05C78
Key Words and Phrases: graph, labeling, magic, trimagic

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
A. Kotzig and A. Rosa,“Magic Valuations of finite graphs", Canad. Math.
Bull., vol.13(1970) 415 - 416.

2
C. Jayasekaran, M. Regees and C. Davidraj, “Edge trimagic labeling of some graphs", Intern. Journal of Combinatorial Graph Theory and Applications, 6(2) (2013)175-186.

3
G. Marimuthu , M. Balakrishnan, “Super Edge Magic Graceful Graphs", Information sciences 287(2014), 140 - 151.

4
Joseph A. Gallian,“A Dynamic Survey of graph Labeling of Some Graphs", The Electronic Journal of Combinatorics (2017), # DS6.

5
M. Regees and C. Jayasekaran, “Edge Trimagic Total Labeling of Graphs", International Journal of Mathematical sciences & Applications, Vol. 3 (2013).

5
M. Regees and C. Jayasekaran,“More Results on Edge Trimagic Labeling of Graphs", International Journal of Mathematics Archive, Vol. 4 (2013).

6
M. Regees and C. Jayasekaran,“Super Edge Trimagic Total Labeling of Square of a cycle and Gear Graphs", Mathematical Sciences International Research Journal. Volume 4 Issue 2(2015).

7
M. Tavakoli, F. Rahbarnia and A. R. Ashrafi,“Studying the Corona Product of Graphs Under Some Graph Invariants", Transactions on Combinatorics, Vol. 3 No. 3 (2014), pp. 43-49.

How to Cite?

DOI: 10.12732/ijpam.v120i3.16 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 3
Pages: 487 - 496


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).