IJPAM: Volume 120, No. 3 (2018)

Title

CYCLIC MODULE AMENABILITY OF BANACH ALGEBRAS

Authors

M.R. Miri$^1$, E. Nasrabadi$^2$, M.H. Rezaei Gol$^3$
$^{1, 2, 3}$Faculty of Mathematics Science and Statistics
University of Birjand
Birjand 9717851367, IRAN

Abstract

In this paper, we define the concept of cyclic module amenability for Banach algebras and we study the hereditary properties of cyclic module amenability on Banach algebras. For example, we investigate relationship between cyclic module amenability of $I$, $A/I$ and $A$, where $I$ is closed ideal and $\mathfrak{A}$-submodule of $A$. Also it is shown that cyclic module amenability of $A$ and $B$ follows from cyclic module amenability of $A\oplus_{\ell^1} B$ and cyclic module amenability of $A$ and $B$ implies cyclic module amenability of $A\oplus_{\ell^1} B$, if $A$ and $B$ are essential.

History

Received: February 27, 2018
Revised: August 23, 2018
Published: November 10, 2018

AMS Classification, Key Words

AMS Subject Classification: 43A07, 46H25, 46H35
Key Words and Phrases: cyclic derivation, cyclic module derivation, cyclic amenability, cyclic module amenability, weak module amenability

Download Section

Download paper from here.
You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.

Bibliography

1
M. Amini, Module amenability for semigroup algebras,Semigroup Forum,69 (2004), 243-254. DOI:10.1007/s00233-004-0107-3.

2
M. Amini, B. E. Bagha,Weak Module amenability for semigroup algebras, Semigroup Forum,71 (2005),18-26. DOI: 10.1007/s00233-004-0166-5.

3
S. Bowling, I. Duncan, First order cohomology of Banach semigroup algebras,Semigroup Forum,56 (1) (1998),130-145. DOI:10.1007/s00233-002-7009-z.

4
H. G. Dales,Banach algebras and automatic continuity,Clarend on Press, Oxford, 2000.

5
F. Gharamani, R. J. Loy, Generalized notions of amenability,J. Funct. Anal,208(2004),229-260. DOI:10.1016/S0022-1236(03)00214-3.

6
N. Grønbæk,Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh. Math. Soc,35(1992),315-328. DOI: 10.1017/S0013091500005587.

7
B. E. Johnson, Cohomology in Banach algebras,Memoirs Amer. Math. Soc,127 (1972).

8
E. Nasrabadi,Cyclic amenability and approximate cyclic amenability of triangular Banach algebras, International Journal of Pure and Applied Mathematics (IJPAM), ISSN:1311-8080, to appear.

9
E. Nasrabadi, A. R. Pourabbas, Second module cohomology group of inverse semigroup algebras,Semigroup Forum,81 (1)(2010), 269-278. DOI:10.1007/s00233-010-9228-z.

10
B. Shojaee, A. Bodaghi,A generalization of cyclic amenability of Banach algebras,Mathematica Slovaca,65 (3)(2015),633-644. DOI:10.1515/ms-2015-0044.

How to Cite?

DOI: 10.12732/ijpam.v120i3.3 How to cite this paper?

Source:
International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 3
Pages: 315 - 327


Google Scholar; DOI (International DOI Foundation); WorldCAT.

CC BY This work is licensed under the Creative Commons Attribution International License (CC BY).