IJPAM: Volume 120, No. 3 (2018)
Title
ORTHOGONAL BASED ZERO-STABLE NUMERICALINTEGRATOR FOR SECOND ORDER IVPs IN ODEs
Authors
E.O. Adeyefa




Federal University Oye-Ekiti
Oye-Ekiti, Ekiti State, NIGERIA

University of Ilorin
Ilorin, Kwara State, NIGERIA
Abstract
This paper presents a set of newly constructed polynomials valid in interval [-1, 1] with respect to weight function
History
Received: June 28, 2016
Revised: April 6, 2018
Published: November 25, 2018
AMS Classification, Key Words
AMS Subject Classification:
Key Words and Phrases:
Download Section
Download paper from here.You will need Adobe Acrobat reader. For more information and free download of the reader, see the Adobe Acrobat website.
Bibliography
- 1
- E.O.Adeyefa and R.B. Adeniyi, Construction of Orthogonal Basis Function and formulation of Continuous Hybrid Schemes for the solution of third order ODEs' Journal of Nigerian Association of Mathematical Physics, 29 (2015): 21-28.
- 2
- R.B. Adeniyi, E.O. Adeyefa, M.O. Alabi, A Continuous Formulation of Some Classical Initial value Solvers by Non- Perturbed Multistep Collocation Approach using Chebyshev Polynomials as Basis Functions. Journal of the Nigerian Association of Mathematical Physics, 10 (2006): 261 - 274.
- 3
- R.B. Adeniyi, M.O. Alabi, Derivation of Continuous Multistep Methods Using Chebyshev Polynomial Basis Functions, Abacus, 33(2B) (2006): 351 - 361.
- 4
- A.O. Adesanya, M.O. Udo, A.M. Alkali, A New Block-Predictor Corrector Algorithm for the Solution of
, American Journal of Computational Mathematics, 2 (2012): 341-344.
- 5
- E.O. Adeyefa, F.L. Joseph, O.D. Ogwumu, Three-Step Implicit Block Method for Second Order ODEs, International Journal of Engineering Science Invention, 3(2), (2014): 34-38.
- 6
- D.O. Awoyemi, E.A. Adebile, A.O. Adesanya, T.A. Anake, Modified Block Method for Direct Solution of Second Order Ordinary Differential Equation,International Journal of Applied Mathematics and Computation, 3(3) (2014).: 181-188.
- 7
- D.O. Awoyemi, S.J. Kayode, L.O. Adoghe, A sixth-Order Implicit method for the numerical integration of initial value problems of third order ordinary differential equations. Journal of the Nigerian Association of Mathematical Physics, 28(1) (2014): 95-102.
- 8
- G. Fairweather, D. Meade, A survey of spline collocation methods for the numerical solution of differential equations in Mathematics for large scale computing (J.C. Diaz, Ed.), Lecture Notes in Pure and Applied Mathematics. New York, Marcel Dekker, 120, (1989). 297-341.
- 9
- S.J. Kayode, A Zero Stable Method for Direct Solution of Fourth Order Ordinary Differential Equations. American Journal of Applied Sciences, 5(11) (2009): 1461-1466.
- 10
- J.D. Lambert, Computational Methods in Ordinary Differential System, John Wiley and Sons, New York (1973).
- 11
- W.E. Milne, Numerical Solution of Differential Equations, John Wiley and Sons New York., USA (1953).
- 12
- C. Lanczos, Trigonometric interpolation of empirical and analytical functions. J. Math. Physics, 17 (1938): 123 – 199.
- 13
- W.E. Milne, Numerical Solution of Differential Equations. John Wiley and Sons, 1953.
- 14
- J.B. Rosser, Runge-Kutta for all seasons. SIAM, (9), (1967) : 417-452.
- 15
- L.F. Shampine, H.A. Watts, Block Implicit One-Step Methods. Journal of Math of Computation, 23(108), (1969): 731-740. doi:10.1090/S0025-5718-1969-0264854-5.
- 16
- Y.A. Yahaya, A.M. Badmus, A class of collocation methods for general second order ordinary differential equations. African Journal of Mathematics and Computer Science, 2(4) (2009), 069-072.
- 17
- M. Zennaro, One-step collocation: Uniform superconvergence, predictor-corrector method, local error estimate, SIAM J. Numerical Analysis 22 (1985), 1135-1152.
How to Cite?
DOI: 10.12732/ijpam.v120i3.4 How to cite this paper?Source: International Journal of Pure and Applied Mathematics
ISSN printed version: 1311-8080
ISSN on-line version: 1314-3395
Year: 2018
Volume: 120
Issue: 3
Pages: 329 - 337
Google Scholar; DOI (International DOI Foundation); WorldCAT.
This work is licensed under the Creative Commons Attribution International License (CC BY).